Person:
Nakatani, Yoshihiro Pat

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Nakatani

First Name

Yoshihiro Pat

Name

Nakatani, Yoshihiro Pat

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    p600 Plays Essential Roles in Fetal Development
    (Public Library of Science, 2013) Nakaya, Takeo; Ishiguro, Kei-ichiro; Belzil, Camille; Rietsch, Anna M.; Yu, Qunyan; Mizuno, Shin-ichi; Bronson, Roderick; Geng, Yan; Nguyen, Minh Dang; Akashi, Koichi; Sicinski, Piotr; Nakatani, Yoshihiro Pat
    p600 is a multifunctional protein implicated in cytoskeletal organization, integrin-mediated survival signaling, calcium-calmodulin signaling and the N-end rule pathway of ubiquitin-proteasome-mediated proteolysis. While push, the Drosophila counterpart of p600, is dispensable for development up to adult stage, the role of p600 has not been studied during mouse development. Here we generated p600 knockout mice to investigate the in vivo functions of p600. Interestingly, we found that homozygous deletion of p600 results in lethality between embryonic days 11.5 and 13.5 with severe defects in both embryo and placenta. Since p600 is required for placental development, we performed conditional disruption of p600, which deletes selectively p600 in the embryo but not in the placenta. The conditional mutant embryos survive longer than knockout embryos but ultimately die before embryonic day 14.5. The mutant embryos display severe cardiac problems characterized by ventricular septal defects and thin ventricular walls. These anomalies are associated with reduced activation of FAK and decreased expression of MEF2, which is regulated by FAK and plays a crucial role in cardiac development. Moreover, we observed pleiotropic defects in the liver and brain. In sum, our study sheds light on the essential roles of p600 in fetal development.
  • Thumbnail Image
    Publication
    Coactivators p300 and PCAF Physically and Functionally Interact with the Foamy Viral Trans-activator
    (BioMed Central, 2004) Bannert, Helmut; Muranyi, Walter; Ogryzko, Vasily V; Nakatani, Yoshihiro Pat; Flügel, Rolf M
    Background: Foamy virus Bel1/Tas trans-activators act as key regulators of gene expression and directly bind to Bel1 response elements (BRE) in both the internal and the 5'LTR promoters leading to strong transcriptional trans-activation. Cellular coactivators interacting with Bel1/Tas are unknown to date. Results: Transient expression assays, co-immunoprecipitation experiments, pull-down assays, and Western blot analysis were used to demonstrate that the coactivator p300 and histone acetyltransferase PCAF specifically interact with the retroviral trans-activator Bel1/Tas in vivo. Here we show that the Bel1/Tas-mediated trans-activation was enhanced by the coactivator p300, histone acetyltransferases PCAF and SRC-1 based on the crucial internal promoter BRE. The Bel1/Tas-interacting region was mapped to the C/H1 domain of p300 by co-immunoprecipitation and pull-down assays. In contrast, coactivator SRC-1 previously reported to bind to the C-terminal domain of p300 did not directly interact with the Bel1 protein but nevertheless enhanced Bel1/Tas-mediated trans-activation. Cotransfection of Bel1/Tas and p300C with an expression plasmid containing the C/H1domain partially inhibited the p300C-driven trans-activation. Conclusion: Our data identify p300 and PCAF as functional partner molecules that directly interact with Bel1/Tas. Since the acetylation activities of the three coactivators reside in or bind to the C-terminal regions of p300, a C/H1 expression plasmid was used as inhibitor. This is the first report of a C/H1 domain-interacting retroviral trans-activator capable of partially blocking the strong Bel1/Tas-mediated activation of the C-terminal region of coactivator p300. The potential mechanisms and functional roles of the three histone and factor acetyltransferases p300, PCAF, and SRC-1 in Bel1/Tas-mediated trans-activation are discussed.