Person:
Muilenberg, Michael

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Muilenberg

First Name

Michael

Name

Muilenberg, Michael

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Mold and Endotoxin Levels in the Aftermath of Hurricane Katrina: A Pilot Project of Homes in New Orleans Undergoing Renovation
    (National Institute of Environmental Health Sciences, 2006) Chew, Ginger L.; Wilson, Jonathan; Rabito, Felicia A.; Grimsley, Faye; Iqbal, Shahed; Reponen, Tiina; Muilenberg, Michael; Thorne, Peter S.; Dearborn, Dorr G.; Morley, Rebecca L.
    Background: After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth. Objectives: A small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup. Methods: Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF). Results: At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m3, spore counts ranged from 82,000 to 630,000 spores/m3, and endotoxin ranged from 17 to 139 endotoxin units/m3. Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators. Conclusions: During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters.
  • Thumbnail Image
    Publication
    Fungal Levels in the Home and Allergic Rhinitis by 5 Years of Age
    (National Institute of Environmental Health Sciences, 2005) Stark, Paul C.; Celedón, Juan C.; Chew, Ginger L.; Ryan, Louise; Burge, Harriet A.; Muilenberg, Michael; Gold, Diane
    Studies have repeatedly demonstrated that sensitization to fungi, such as Alternaria, is strongly associated with allergic rhinitis and asthma in children. However, the role of exposure to fungi in the development of childhood allergic rhinitis is poorly understood. In a prospective birth cohort of 405 children of asthmatic/allergic parents from metropolitan Boston, Massachusetts, we examined in-home high fungal concentrations (> 90th percentile) measured once within the first 3 months of life as predictors of doctor-diagnosed allergic rhinitis in the first 5 years of life. In multivariate Cox regression analyses, predictors of allergic rhinitis included high levels of dust-borne Aspergillus [hazard ratio (HR) = 3.27; 95% confidence interval (CI), 1.50–7.14], Aureobasidium (HR = 3.04; 95% CI, 1.33–6.93), and yeasts (HR = 2.67; 95% CI, 1.26–5.66). The factors controlled for in these analyses included water damage or mild or mildew in the building during the first year of the child’s life, any lower respiratory tract infection in the first year, male sex, African-American race, fall date of birth, and maternal IgE to Alternaria > 0.35 U/mL. Dust-borne Alternaria and non-sporulating and total fungi were also predictors of allergic rhinitis in models excluding other fungi but adjusting for all of the potential confounders listed above. High measured fungal concentrations and reports of water damage, mold, or mildew in homes may predispose children with a family history of asthma or allergy to the development of allergic rhinitis.
  • Thumbnail Image
    Publication
    Interaction of the Onset of Spring and Elevated Atmospheric CO2 on Ragweed (Ambrosia artemisiifolia L.) Pollen Production
    (National Institute of Environmental Health Sciences, 2006) Rogers, Christine Anne; Wayne, Peter; Macklin, Eric; Muilenberg, Michael; Wagner, Christopher J.; Epstein, Paul; Bazzaz, Fakhri A.
    Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glasshouses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over inflorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of inflorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed greater biomass and reproductive effort compared with those in ambient CO2 but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, compared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions.