Person:
van Haren, Simon

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

van Haren

First Name

Simon

Name

van Haren, Simon

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes
    (Public Library of Science, 2015) Ganapathi, Lakshmi; van Haren, Simon; Dowling, David; Bergelson, Ilana; Shukla, Nikunj M.; Malladi, Subbalakshmi S.; Balakrishna, Rajalakshmi; Tanji, Hiromi; Ohto, Umeharu; Shimizu, Toshiyuki; David, Sunil A.; Levy, Ofer
    Background: Newborns and young infants are at higher risk for infections than adults, and manifest suboptimal vaccine responses, motivating a search for novel immunomodulators and/or vaccine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8 agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine production from human neonatal cord blood monocytes and are candidate early life adjuvants. We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod (R848). Methods: TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine production in human newborn cord and adult peripheral blood and in monocyte-derived dendritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography characterized the interaction of human TLR8 with Hybrid-2. Results: Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crystallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl substituent, which can engage in unfavorable electrostatic and/or dipolar interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy and potency compared to R848. Conclusions: Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life immunization.
  • Thumbnail Image
    Publication
    A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity
    (Frontiers Media S.A., 2016) Dowling, David; Sanders, Holly; Cheng, Wing Ki; Joshi, Sweta; Brightman, Spencer; Bergelson, Ilana; Pietrasanta, Carlo; van Haren, Simon; van Amsterdam, Sandra; Fernandez, Jeffrey; van den Dobbelsteen, Germie P. J. M.; Levy, Ofer
    Background: Group B Neisseria meningitidis, an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific human in vitro culture systems. Methods: OMVs from wild type- and inactivated lpxL1 gene mutant-N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell (DC) arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and prostaglandin E2 production, as well as cell surface activation markers (HLA-DR, CD86, and CCR7). OMV immunogenicity was assessed in mice. Results: ΔlpxLI native OMVs (nOMVs) demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, and bacillus Calmette–Guérin) tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI nOMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization. Conclusion: A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.
  • Thumbnail Image
    Publication
    Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses
    (Mosby, 2017) Dowling, David; Scott, Evan A.; Scheid, Annette; Bergelson, Ilana; Joshi, Sweta; Pietrasanta, Carlo; Brightman, Spencer; Sanchez-Schmitz, Guzman; van Haren, Simon; Ninković, Jana; Kats, Dina; Guiducci, Cristiana; de Titta, Alexandre; Bonner, Daniel K.; Hirosue, Sachiko; Swartz, Melody A.; Hubbell, Jeffrey A.; Levy, Ofer
    Background: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. Objective: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Methods: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Results: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. Conclusion: TLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.