Person: Wells, William
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Wells
First Name
William
Name
Wells, William
16 results
Search Results
Now showing 1 - 10 of 16
Publication A New Metric for Detecting Change in Slowly Evolving Brain Tumors: Validation in Meningioma Patients(Oxford University Press (OUP), 2011) Pohl, Kilian M; Konukoglu, Ender; Novellas, Sebastian; Ayache, Nicholas; Fedorov, Andriy; Talos, Ion-Florin; Golby, Alexandra; Wells, William; Kikinis, Ron; Black, PeterBACKGROUND: Change detection is a critical component in the diagnosis and monitoring of many slowly evolving pathologies. OBJECTIVE: This article describes a semiautomatic monitoring approach using longitudinal medical images. We test the method on brain scans of patients with meningioma, which experts have found difficult to monitor because the tumor evolution is very slow and may be obscured by artifacts related to image acquisition. METHODS: We describe a semiautomatic procedure targeted toward identifying difficult-to-detect changes in brain tumor imaging. The tool combines input from a medical expert with state-of-the-art technology. The software is easy to calibrate and, in less than 5 minutes, returns the total volume of tumor change in mm. We test the method on postgadolinium, T1-weighted magnetic resonance images of 10 patients with meningioma and compare our results with experts' findings. We also perform benchmark testing with synthetic data. RESULTS: Our experiments indicated that experts' visual inspections are not sensitive enough to detect subtle growth. Measurements based on experts' manual segmentations were highly accurate but also labor intensive. The accuracy of our approach was comparable to the experts' results. However, our approach required far less user input and generated more consistent measurements. CONCLUSION: The sensitivity of experts' visual inspection is often too low to detect subtle growth of meningiomas from longitudinal scans. Measurements based on experts' segmentation are highly accurate but generally too labor intensive for standard clinical settings. We described an alternative metric that provides accurate and robust measurements of subtle tumor changes while requiring a minimal amount of user input.Publication Multimodal Image Registration for Preoperative Planning and Image-Guided Neurosurgical Procedures(Elsevier BV, 2011) Risholm, Petter; Golby, Alexandra; Wells, WilliamImage registration is the process of transforming images acquired at different time points, or with different imaging modalities, into the same coordinate system. It is an essential part of any neurosurgical planning and navigation system because it facilitates combining images with important complementary, structural, and functional information to improve the information based on which a surgeon makes critical decisions. Brigham and Women's Hospital (BWH) has been one of the pioneers in developing intraoperative registration methods for aligning preoperative and intraoperative images of the brain. This article presents an overview of intraoperative registration and highlights some recent developments at BWH.Publication fMRI-DTI modeling via landmark distance atlases for prediction and detection of fiber tracts(Elsevier BV, 2012) O'Donnell, Lauren; Rigolo, Laura; Norton, Isaiah; Wells, William; Westin, Carl-Fredrik; Golby, AlexandraThe overall goal of this research is the design of statistical atlas models that can be created from normal subjects, but may generalize to be applicable to abnormal brains. We present a new style of joint modeling of fMRI, DTI, and structural MRI. Motivated by the fact that a white matter tract and related cortical areas are likely to displace together in the presence of a mass lesion (brain tumor), in this work we propose a rotation and translation invariant model that represents the spatial relationship between fiber tracts and anatomic and functional landmarks. This landmark distance model provides a new basis for representation of fiber tracts and can be used for detection and prediction of fiber tracts based on landmarks. Our results indicate that the measured model is consistent across normal subjects, and thus suitable for atlas building. Our experiments demonstrate that the model is robust to displacement and missing data, and can be successfully applied to a small group of patients with mass lesions.Publication Extended Broca’s Area in the Functional Connectome of Language in Adults: Combined Cortical and Subcortical Single-Subject Analysis Using fMRI and DTI Tractography(Springer Nature, 2012) Lemaire, Jean-Jacques; Golby, Alexandra; Wells, William; Pujol, Sonia; Tie, Yanmei; Rigolo, Laura; Yarmarkovich, Alexander; Pieper, Steve; Westin, Carl-Fredrik; Jolesz, Ferenc; Kikinis, RonTraditional models of the human language circuitry encompass three cortical areas, Broca’s, Geschwind’s and Wernicke’s, and their connectivity through white matter fascicles. The neural connectivity deep to these cortical areas remains poorly understood, as does the macroscopic functional organization of the cortico-subcortical language circuitry. In an effort to expand current knowledge, we combined functional MRI (fMRI) and diffusion tensor imaging to explore subject-specific structural and functional macroscopic connectivity, focusing on Broca’s area. Fascicles were studied using diffusion tensor imaging fiber tracking seeded from volumes placed manually within the white matter. White matter fascicles and fMRI-derived clusters (antonym-generation task) of positive and negative blood-oxygen-level-dependent (BOLD) signal were co-registered with 3-D renderings of the brain in 12 healthy subjects. Fascicles connecting BOLD-derived clusters were analyzed within specific cortical areas: Broca’s, with the pars triangularis, the pars opercularis, and the pars orbitaris; Geschwind’s and Wernicke’s; the premotor cortex, the dorsal supplementary motor area, the middle temporal gyrus, the dorsal prefrontal cortex and the frontopolar region. We found a functional connectome divisible into three systems—anterior, superior and inferior—around the insula, more complex than previously thought, particularly with respect to a new extended Broca’s area. The extended Broca’s area involves two new fascicles: the operculo-premotor fascicle comprised of well-organized U-shaped fibers that connect the pars opercularis with the premotor region; and (2) the triangulo-orbitaris system comprised of intermingled U-shaped fibers that connect the pars triangularis with the pars orbitaris. The findings enhance our understanding of language function.Publication Unbiased Groupwise Registration of White Matter Tractography(Springer Berlin Heidelberg, 2012) O’Donnell, Lauren J.; Wells, William; Golby, Alexandra; Westin, Carl-FredrikWe present what we believe to be the first investigation into unbiased multi-subject registration of whole brain diffusion tractography of the white matter. To our knowledge, this is also the first entropy-based objective function applied to fiber tract registration. To define the probability of fiber trajectories for the computation of entropy, we take advantage of a pairwise fiber distance used as the basis for a Gaussian-like kernel. By employing several values of the kernel’s scale parameter, the method is inherently multi-scale. Results of experiments using synthetic and real datasets demonstrate the potential of the method for simultaneous joint registration of tractography.Publication Bayesian characterization of uncertainty in intra-subject non-rigid registration(Elsevier BV, 2013) Risholm, Petter; Janoos, Firdaus; Norton, Isaiah Hakim; Golby, Alexandra; Wells, WilliamIn settings where high-level inferences are made based on registered image data, the registration uncertainty can contain important information. In this article, we propose a Bayesian non-rigid registration framework where conventional dissimilarity and regularization energies can be included in the likelihood and the prior distribution on deformations respectively through the use of Boltzmann’s distribution. The posterior distribution is characterized using Markov Chain Monte Carlo (MCMC) methods with the effect of the Boltzmann temperature hyper-parameters marginalized under broad uninformative hyper-prior distributions. The MCMC chain permits estimation of the most likely deformation as well as the associated uncertainty. On synthetic examples, we demonstrate the ability of the method to identify the maximum a posteriori estimate and the associated posterior uncertainty, and demonstrate that the posterior distribution can be non-Gaussian. Additionally, results from registering clinical data acquired during neurosurgery for resection of brain tumor are provided; we compare the method to single transformation results from a deterministic optimizer and introduce methods that summarize the high-dimensional uncertainty. At the site of resection, the registration uncertainty increases and the marginal distribution on deformations is shown to be multi-modal.Publication Morphological Characteristics of Brain Tumors Causing Seizures(American Medical Association (AMA), 2010) Lee, Jong; Wen, Patrick; Hurwitz, Shelley; Black, Peter; Kesari, Santosh; Drappatz, Jan; Golby, Alexandra; Wells, William; Warfield, Simon; Kikinis, Ron; Bromfield, Edward B.Objective: To quantify size and localization differences between tumors presenting with seizures vs nonseizure neurological symptoms. Design: Retrospective imaging survey. We performed magnetic resonance imaging–based morphometric analysis and nonparametric mapping in patients with brain tumors. Setting: University-affiliated teaching hospital. Patients or Other Participants: One hundred twenty-four patients with newly diagnosed supratentorial glial tumors. Main Outcome Measures: Volumetric and mapping methods were used to evaluate differences in size and location of the tumors in patients who presented with seizures as compared with patients who presented with other symptoms. Results: In high-grade gliomas, tumors presenting with seizures were smaller than tumors presenting with other neurological symptoms, whereas in low-grade gliomas, tumors presenting with seizures were larger. Tumor location maps revealed that in high-grade gliomas, deep-seated tumors in the pericallosal regions were more likely to present with nonseizure neurological symptoms. In low-grade gliomas, tumors of the temporal lobe as well as the insular region were more likely to present with seizures. Conclusions: The influence of size and location of the tumors on their propensity to cause seizures varies with the grade of the tumor. In high-grade gliomas, rapidly growing tumors, particularly those situated in deeper structures, present with non–seizure-related symptoms. In low-grade gliomas, lesions in the temporal lobe or the insula grow large without other symptoms and eventually cause seizures. Quantitative image analysis allows for the mapping of regions in each group that are more or less susceptible to seizures. Seizures are encountered in a majority of patients with primary brain tumors and are a major cause of morbidity in these patients.1,2 Thirty percent to 50% of patients experience a seizure by the time their tumors are diagnosed, and an additional 6% to 45% of patients who do not initially present with seizures eventually develop them.3- 5 Characteristics of brain tumors and their mechanism in causing seizures in patients are incompletely understood.4,6 Low-grade, well-differentiated gliomas,1,6- 9 cortically located tumors,3,10- 14 and location in the temporal/frontal and motor/sensory cortices6,8,15- 17 are more frequently associated with seizures. Although there is a high incidence of seizures in these patients, treatment strategies remain poorly defined. Prophylactic anticonvulsant therapy, shown to be ineffective in preventing seizures in patients with brain tumors in multiple large-scale studies,12,18- 20 is not recommended by the American Academy of Neurology.5 Nonetheless, prophylaxis remains a widespread practice21 because of difficulty in determining which patients are at greatest risk for seizures. Determination of morphometric factors influencing seizures would help in identifying patients at greatest risk for early, targeted treatment and prevent potentially toxic, unnecessary treatment in patients at minimal risk. Although studies examining brain tumors in relationship to epilepsy have localized tumors to a particular lobe,10 few studies have performed quantitative volumetric or spatial mapping analysis of tumors in relation to their epileptogenic potential. Regions within a particular lobe are likely to exhibit different epileptogenic potential to tumor invasion and tumors frequently affect multiple contiguous lobes.6 Modern imaging techniques allow for analysis of lesions over a large group of subjects through registration and mapping techniques. In this study, we used these techniques to examine the size and location of primary supratentorial glial brain tumors and characterized their propensity to cause seizures at presentation.Publication A Hierarchical Algorithm for MR Brain Image Parcellation(Institute of Electrical and Electronics Engineers (IEEE), 2007) Pohl, Kilian M.; Bouix, Sylvain; Nakamura, Motoaki; Rohlfing, Torsten; McCarley, Robert William; Kikinis, Ron; Grimson, W. Eric L.; Shenton, Martha; Wells, WilliamWe introduce an algorithm for segmenting brain magnetic resonance (MR) images into anatomical compartments such as the major tissue classes and neuro-anatomical structures of the gray matter. The algorithm is guided by prior information represented within a tree structure. The tree mirrors the hierarchy of anatomical structures and the sub-trees correspond to limited segmentation problems. The solution to each problem is estimated via a conventional classifier. Our algorithm can be adapted to a wide range of segmentation problems by modifying the tree structure or replacing the classifier. We evaluate the performance of our new segmentation approach by revisiting a previously published statistical group comparison between first-episode schizophrenia patients, first-episode affective psychosis patients, and comparison subjects. The original study is based on 50 MR volumes in which an expert identified the brain tissue classes as well as the superior temporal gyrus, amygdala, and hippocampus. We generate analogous segmentations using our new method and repeat the statistical group comparison. The results of our analysis are similar to the original findings, except for one structure (the left superior temporal gyrus) in which a trend-level statistical significance (p=0.07) was observed instead of statistical significance.Publication A Unifying Approach to Registration, Segmentation, and Intensity Correction(Springer Science + Business Media, 2005) Pohl, Kilian M.; Fisher, John; Levitt, James; Shenton, Martha; Kikinis, Ron; Grimson, William Eric Leifur; Wells, WilliamWe present a statistical framework that combines the registration of an atlas with the segmentation of magnetic resonance images. We use an Expectation Maximization-based algorithm to find a solution within the model, which simultaneously estimates image inhomogeneities, anatomical labelmap, and a mapping from the atlas to the image space. An example of the approach is given for a brain structure-dependent affine mapping approach. The algorithm produces high quality segmentations for brain tissues as well as their substructures. We demonstrate the approach on a set of 22 magnetic resonance images. In addition, we show that the approach performs better than similar methods which separate the registration and segmentation problems.Publication Free-Form B-spline Deformation Model for Groupwise Registration(Springer, 2007) Balci, Serdar K; Golland, Polina; Shenton, Martha; Wells, WilliamIn this work, we extend a previously demonstrated entropy based groupwise registration method to include a free-form deformation model based on B-splines. We provide an efficient implementation using stochastic gradient descents in a multi-resolution setting. We demonstrate the method in application to a set of 50 MRI brain scans and compare the results to a pairwise approach using segmentation labels to evaluate the quality of alignment. Our results indicate that increasing the complexity of the deformation model improves registration accuracy significantly, especially at cortical regions.