Person:
Bellinger, David

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bellinger

First Name

David

Name

Bellinger, David

Search Results

Now showing 1 - 10 of 51
  • Thumbnail Image
    Publication
    Prenatal and Childhood Traffic-Related Pollution Exposure and Childhood Cognition in the Project Viva Cohort (Massachusetts, USA)
    (NLM-Export, 2015) Harris, Maria H.; Gold, Diane; Rifas-Shiman, Sheryl; Melly, Steven J.; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Koutrakis, Petros; Bellinger, David; White, Roberta F.; Sagiv, Sharon K.; Oken, Emily
    Background: Influences of prenatal and early-life exposures to air pollution on cognition are not well understood. Objectives: We examined associations of gestational and childhood exposure to traffic-related pollution with childhood cognition. Methods: We studied 1,109 mother–child pairs in Project Viva, a prospective birth cohort study in eastern Massachusetts (USA). In mid-childhood (mean age, 8.0 years), we measured verbal and nonverbal intelligence, visual motor abilities, and visual memory. For periods in late pregnancy and childhood, we estimated spatially and temporally resolved black carbon (BC) and fine particulate matter (PM2.5) exposures, residential proximity to major roadways, and near-residence traffic density. We used linear regression models to examine associations of exposures with cognitive assessment scores, adjusted for potential confounders. Results: Compared with children living ≥ 200 m from a major roadway at birth, those living < 50 m away had lower nonverbal IQ [–7.5 points; 95% confidence interval (CI): –13.1, –1.9], and somewhat lower verbal IQ (–3.8 points; 95% CI: –8.2, 0.6) and visual motor abilities (–5.3 points; 95% CI: –11.0, 0.4). Cross-sectional associations of major roadway proximity and cognition at mid-childhood were weaker. Prenatal and childhood exposure to traffic density and PM2.5 did not appear to be associated with poorer cognitive performance. Third-trimester and childhood BC exposures were associated with lower verbal IQ in minimally adjusted models; but after adjustment for socioeconomic covariates, associations were attenuated or reversed. Conclusions: Residential proximity to major roadways during gestation and early life may affect cognitive development. Influences of pollutants and socioeconomic conditions on cognition may be difficult to disentangle. Citation Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, Schwartz JD, Gryparis A, Kloog I, Koutrakis P, Bellinger DC, White RF, Sagiv SK, Oken E. 2015. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the Project Viva cohort (Massachusetts, USA). Environ Health Perspect 123:1072–1078; http://dx.doi.org/10.1289/ehp.1408803
  • Thumbnail Image
    Publication
  • Thumbnail Image
    Publication
    The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20–40 Months of Age: Evidence from Rural Bangladesh
    (Environmental Health Perspectives, 2017) Valeri, Linda; Mazumdar, Maitreyi M.; Bobb, Jennifer F.; Claus Henn, Birgit; Rodrigues, Ema; Sharif, Omar I.A.; Kile, Molly L.; Quamruzzaman, Quazi; Afroz, Sakila; Golam, Mostafa; Amarasiriwardena, Citra; Bellinger, David; Christiani, David; Coull, Brent; Wright, Robert O.
    Background: Exposure to chemical mixtures is recognized as the real-life scenario in all populations, needing new statistical methods that can assess their complex effects. Objectives: We aimed to assess the joint effect of in utero exposure to arsenic, manganese, and lead on children’s neurodevelopment. Methods: We employed a novel statistical approach, Bayesian kernel machine regression (BKMR), to study the joint effect of coexposure to arsenic, manganese, and lead on neurodevelopment using an adapted Bayley Scale of Infant and Toddler Development™. Third Edition, in 825 mother–child pairs recruited into a prospective birth cohort from two clinics in the Pabna and Sirajdikhan districts of Bangladesh. Metals were measured in cord blood using inductively coupled plasma-mass spectrometry. Results: Analyses were stratified by clinic due to differences in exposure profiles. In the Pabna district, which displayed high manganese levels [interquartile range (IQR): 4.8, 18μg/dl], we found a statistically significant negative effect of the mixture of arsenic, lead, and manganese on cognitive score when cord blood metals concentrations were all above the 60th percentile (As≥0.7μg/dl, Mn≥6.6μg/dl, Pb≥4.2μg/dl) compared to the median (As=0.5μg/dl, Mn=5.8μg/dl, Pb=3.1μg/dl). Evidence of a nonlinear effect of manganese was found. A change in log manganese from the 25th to the 75th percentile when arsenic and manganese were at the median was associated with a decrease in cognitive score of −0.3 (−0.5, −0.1) standard deviations. Our study suggests that arsenic might be a potentiator of manganese toxicity. Conclusions: Employing a novel statistical method for the study of the health effects of chemical mixtures, we found evidence of neurotoxicity of the mixture, as well as potential synergism between arsenic and manganese. https://doi.org/10.1289/EHP614
  • Thumbnail Image
    Publication
    Health Risks from Lead-Based Ammunition in the Environment
    (National Institute of Environmental Health Sciences, 2013) Bellinger, David; Burger, Joanna; Cade, Tom J.; Cory-Slechta, Deborah A.; Finkelstein, Myra; Hu, Howard; Kosnett, Michael; Landrigan, Philip J.; Lanphear, Bruce; Pokras, Mark A.; Redig, Patrick T.; Rideout, Bruce A.; Silbergeld, Ellen; Wright, Robert; Smith, Donald R.
  • Thumbnail Image
    Publication
    Methodological Framework for World Health Organization Estimates of the Global Burden of Foodborne Disease
    (Public Library of Science, 2015) Devleesschauwer, Brecht; Haagsma, Juanita A.; Angulo, Frederick J.; Bellinger, David; Cole, Dana; Döpfer, Dörte; Fazil, Aamir; Fèvre, Eric M.; Gibb, Herman J.; Hald, Tine; Kirk, Martyn D.; Lake, Robin J.; Maertens de Noordhout, Charline; Mathers, Colin D.; McDonald, Scott A.; Pires, Sara M.; Speybroeck, Niko; Thomas, M. Kate; Torgerson, Paul R.; Wu, Felicia; Havelaar, Arie H.; Praet, Nicolas
    Background: The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization to estimate the global burden of foodborne diseases (FBDs). This paper describes the methodological framework developed by FERG's Computational Task Force to transform epidemiological information into FBD burden estimates. Methods and Findings: The global and regional burden of 31 FBDs was quantified, along with limited estimates for 5 other FBDs, using Disability-Adjusted Life Years in a hazard- and incidence-based approach. To accomplish this task, the following workflow was defined: outline of disease models and collection of epidemiological data; design and completion of a database template; development of an imputation model; identification of disability weights; probabilistic burden assessment; and estimating the proportion of the disease burden by each hazard that is attributable to exposure by food (i.e., source attribution). All computations were performed in R and the different functions were compiled in the R package 'FERG'. Traceability and transparency were ensured by sharing results and methods in an interactive way with all FERG members throughout the process. Conclusions: We developed a comprehensive framework for estimating the global burden of FBDs, in which methodological simplicity and transparency were key elements. All the tools developed have been made available and can be translated into a user-friendly national toolkit for studying and monitoring food safety at the local level.
  • Thumbnail Image
    Publication
    Contaminated Turmeric Is a Potential Source of Lead Exposure for Children in Rural Bangladesh
    (Hindawi Publishing Corporation, 2014) Gleason, Kelsey; Shine, James P.; Shobnam, Nadia; Rokoff, Lisa; Suchanda, Hafiza Sultana; Ibne Hasan, Md Omar Sharif; Mostofa, Golam; Amarasiriwardena, Chitra; Quamruzzaman, Quazi; Rahman, Mahmuder; Kile, Molly L.; Bellinger, David; Christiani, David; Wright, Robert O.; Mazumdar, Maitreyi
    Background. During the conduct of a cohort study intended to study the associations between mixed metal exposures and child health outcomes, we found that 78% of 309 children aged 20–40 months evaluated in the Munshiganj District of Bangladesh had blood lead concentrations ≥5 µg/dL and 27% had concentrations ≥10 µg/dL. Hypothesis. Environmental sources such as spices (e.g., turmeric, which has already faced recalls in Bangladesh due to high lead levels) may be a potential route of lead exposure. Methods. We conducted visits to the homes of 28 children randomly selected from among high and low blood lead concentration groups. During the visits, we administered a structured questionnaire and obtained soil, dust, rice, and spice samples. We obtained water samples from community water sources, as well as environmental samples from neighborhood businesses. Results. Lead concentrations in many turmeric samples were elevated, with lead concentrations as high as 483 ppm. Analyses showed high bioaccessibility of lead. Conclusions. Contamination of turmeric powder is a potentially important source of lead exposure in this population.
  • Thumbnail Image
    Publication
    Prenatal Organochlorine and Methylmercury Exposure and Memory and Learning in School-Age Children in Communities Near the New Bedford Harbor Superfund Site, Massachusetts
    (NLM-Export, 2014) Orenstein, Sara T.C.; Thurston, Sally W.; Bellinger, David; Schwartz, Joel; Amarasiriwardena, Chitra J.; Altshul, Larisa; Korrick, Susan
    Background: Polychlorinated biphenyls (PCBs), organochlorine pesticides, and methylmercury (MeHg) are environmentally persistent with adverse effects on neurodevelopment. However, especially among populations with commonly experienced low levels of exposure, research on neurodevelopmental effects of these toxicants has produced conflicting results. Objectives: We assessed the association of low-level prenatal exposure to these contaminants with memory and learning. Methods: We studied 393 children, born between 1993 and 1998 to mothers residing near a PCB-contaminated harbor in New Bedford, Massachusetts. Cord serum PCB, DDE (dichlorodiphenyldichloroethylene), and maternal peripartum hair mercury (Hg) levels were measured to estimate prenatal exposure. Memory and learning were assessed at 8 years of age (range, 7–11 years) using the Wide Range Assessment of Memory and Learning (WRAML), age-standardized to a mean ± SD of 100 ± 15. Associations with each WRAML index—Visual Memory, Verbal Memory, and Learning—were examined with multivariable linear regression, controlling for potential confounders. Results: Although cord serum PCB levels were low (sum of four PCBs: mean, 0.3 ng/g serum; range, 0.01–4.4), hair Hg levels were typical of the U.S. fish-eating population (mean, 0.6 μg/g; range, 0.3–5.1). In multivariable models, each microgram per gram increase in hair Hg was associated with, on average, decrements of –2.8 on Visual Memory (95% CI: –5.0, –0.6, p = 0.01), –2.2 on Learning (95% CI: –4.6, 0.2, p = 0.08), and –1.7 on Verbal Memory (95% CI: –3.9, 0.6, p = 0.14). There were no significant adverse associations of PCBs or DDE with WRAML indices. Conclusions: These results support an adverse relationship between low-level prenatal MeHg exposure and childhood memory and learning, particularly visual memory. Citation: Orenstein ST, Thurston SW, Bellinger DC, Schwartz JD, Amarasiriwardena CJ, Altshul LM, Korrick SA. 2014. Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the New Bedford Harbor Superfund Site, Massachusetts. Environ Health Perspect 122:1253–1259; http://dx.doi.org/10.1289/ehp.1307804
  • Thumbnail Image
    Publication
    Neurobehavioral Function in School-Age Children Exposed to Manganese in Drinking Water
    (NLM-Export, 2014) Oulhote, Youssef; Mergler, Donna; Barbeau, Benoit; Bellinger, David; Bouffard, Thérèse; Brodeur, Marie-Ève; Saint-Amour, Dave; Legrand, Melissa; Sauvé, Sébastien; Bouchard, Maryse F.
    Background: Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. Objective: We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. Methods: We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure–response relationships using generalized additive models. Results: After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of –24% (95% CI: –36, –12%) SD in memory and –25% (95% CI: –41, –9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of –14% (95% CI: –24, –4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of –11% (95% CI: –21, –0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Conclusion: Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America. Citation: Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF. 2014. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122:1343–1350; http://dx.doi.org/10.1289/ehp.1307918
  • Thumbnail Image
    Publication
    Maternal iron metabolism gene variants modify umbilical cord blood lead levels by gene-environment interaction: a birth cohort study
    (BioMed Central, 2014) Karwowski, Mateusz P; Just, Allan C.; Bellinger, David; Jim, Rebecca; Hatley, Earl L; Ettinger, Adrienne S; Hu, Howard; Wright, Robert O
    Background: Given the relationship between iron metabolism and lead toxicokinetics, we hypothesized that polymorphisms in iron metabolism genes might modify maternal-fetal lead transfer. The objective of this study was to determine whether maternal and/or infant transferrin (TF) and hemochromatosis (HFE) gene missense variants modify the association between maternal blood lead (MBL) and umbilical cord blood lead (UCBL). Methods: We studied 476 mother-infant pairs whose archived blood specimens were genotyped for TF P570S, HFE H63D and HFE C282Y. MBL and UCBL were collected within 12 hours of delivery. Linear regression models were used to examine the association between log-transformed MBL and UCBL, examine for confounding and collinearity, and explore gene-environment interactions. Results: The geometric mean MBL was 0.61 μg/dL (range 0.03, 3.2) and UCBL 0.42 (<0.02, 3.9). Gene variants were common with carrier frequencies ranging from 12-31%; all were in Hardy-Weinberg equilibrium. In an adjusted linear regression model, log MBL was associated with log UCBL (β = 0.92, 95% CI: 0.82, 1.03; p < 0.01) such that a 1% increase in MBL was associated with a 0.92% increase in UCBL among infants born to wild-type mothers. In infants born to C282Y variants, however, a 1% increase in MBL is predicted to increase UCBL 0.65% (βMain Effect = −0.002, 95% CI: −0.09, −0.09; p = 0.97; βInteraction = −0.27, 95% CI: −0.52, −0.01; p = 0.04), representing a 35% lower placental lead transfer among women with MBL 5 μg/dL. Conclusions: Maternal HFE C282Y gene variant status is associated with greater reductions in placental transfer of lead as MBL increases. The inclusion of gene-environment interaction in risk assessment models may improve efforts to safeguard vulnerable populations. Electronic supplementary material The online version of this article (doi:10.1186/1476-069X-13-77) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Stunting is associated with blood lead concentration among Bangladeshi children aged 2-3 years
    (BioMed Central, 2016) Gleason, Kelsey; Valeri, Linda; Shankar, A. H.; Hasan, Md Omar Sharif Ibne; Quamruzzaman, Quazi; Rodrigues, Ema; Christiani, David; Wright, Robert O.; Bellinger, David; Mazumdar, Maitreyi
    Background: Lead toxicity is of particular public health concern given its near ubiquitous distribution in nature and established neurotoxicant properties. Similar in its ubiquity and ability to inhibit neurodevelopment, early childhood stunting affects an estimated 34 % of children under 5 in low- and middle-income countries. Both lead and stunting have been shown to be associated with decreased neurodevelopment, although the relationship between these childhood burdens is underexplored. The association between lead exposure and stunting has been previously established, yet limited data are available on susceptibility windows. Methods: Whole blood lead samples were collected from rural Bangladeshi children at delivery (umbilical cord blood) and at age 20–40 months (fingerstick blood). Stunting was determined using the Child Growth Standards developed from the World Health Organization Multicentre Growth Reference Study. Children with height for age < -2 z-scores below the median of the WHO Child Growth Standards were classified as stunted in all analyses. Results: Median (IQR) umbilical cord and fingerstick blood lead levels were 3.1 (1.6–6.3) μg/dl and 4.2 (1.7–7.6) μg/dl, respectively. In adjusted multivariable regression models, the odds of stunting at 20–40 months increased by 1.12 per μg/dl increase in blood lead level (OR = 1.12, 95 % CI: 1.02–1.22). No association was found between cord blood lead level and risk of stunting (OR = 0.97, 95 % CI: 0.94–1.00). Conclusions: There is a significant association between stunting and concurrent lead exposure at age 20–40 months. This association is slightly attenuated after controlling for study clinic site. Additional research including more precise timing of lead exposure during these critical 20–40 months is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12940-016-0190-4) contains supplementary material, which is available to authorized users.