Person: Lyons, Shawn
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lyons
First Name
Shawn
Name
Lyons, Shawn
4 results
Search Results
Now showing 1 - 4 of 4
Publication Author Correction: Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs(Nature Publishing Group UK, 2017) Lyons, Shawn; Gudanis, Dorota; Coyne, Steve; Gdaniec, Zofia; Ivanov, PavelPublication Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs(Nature Publishing Group UK, 2017) Lyons, Shawn; Gudanis, Dorota; Coyne, Stephen M.; Gdaniec, Zofia; Ivanov, PavelRNA G-quadruplex (RG4) structures are involved in multiple biological processes. Recent genome-wide analyses of human mRNA transcriptome identified thousands of putative intramolecular RG4s that readily assemble in vitro but shown to be unfolded in vivo. Previously, we have shown that mature cytoplasmic tRNAs are cleaved during stress response to produce tRNA fragments that function to repress translation in vivo. Here we report that these bioactive tRNA fragments assemble into intermolecular RG4s. We provide evidence for the formation of uniquely stable tetramolecular RG4 structures consisting of five tetrad layers formed by 5ʹ-terminal oligoguanine motifs of an individual tRNA fragment. RG4 is required for functions of tRNA fragments in the regulation of mRNA translation, a critical component of cellular stress response. RG4 disruption abrogates tRNA fragments ability to trigger the formation of Stress Granules in vivo. Collectively, our data rationalize the existence of naturally occurring RG4-assembling tRNA fragments and emphasize their regulatory roles.Publication YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression(Oxford University Press, 2016) Lyons, Shawn; Achorn, Chris; Kedersha, Nancy; Anderson, Paul; Ivanov, PavelStress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program.Publication G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits(The Rockefeller University Press, 2016) Kedersha, Nancy; Panas, Marc D.; Achorn, Christopher A.; Lyons, Shawn; Tisdale, Sarah; Hickman, Tyler; Thomas, Marshall; Lieberman, Judy; McInerney, Gerald M.; Ivanov, Pavel; Anderson, PaulMammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.