Person: Maeder, M
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Maeder
First Name
M
Name
Maeder, M
2 results
Search Results
Now showing 1 - 2 of 2
Publication Engineered DNA-Binding Proteins for Targeted Genome Editing and Gene Regulation(2013-10-08) Maeder, M; Joung, Jae Keith; Hochschild, Ann; Ptashne, Mark; Struhl, Kevin; Kingston, RobertEngineered DNA-binding proteins enable targeted manipulation of the genome. Zinc fingers are the most well characterized DNA-binding domain and for many years research has focused on understanding and manipulating the sequence-specificities of these proteins. Recently, major advances in the ability to engineer zinc finger proteins, as well as the discovery of a new class of DNA-binding domains - transcription activator-like effectors (TALEs), have made it possible to rapidly and reliably engineer proteins targeted to any sequence of interest. With this capability, focus has shifted to exploring the applications of this powerful technology. In this dissertation I explore three important applications of engineered DNA-binding proteins.Publication Pathways Disrupted in Human ALS Motor Neurons Identified through Genetic Correction of Mutant SOD1(Elsevier BV, 2014) Kiskinis, Evangelos; Sandoe, Jackson L; Williams, Lauren; Boulting, Gabriella; Moccia, Robert; Wainger, Brian; Han, Steve Sang-woo; Peng, Theodore; Thams, Sebastian; Mikkilineni, Shravani; Mellin, Cassidy; Merkle, Florian; Davis-Dusenbery, Brandi N; Ziller, Michael; Oakley, Derek; Ichida, Justin; Di Costanzo, Stefania; Atwater, Nick; Maeder, M; Goodwin, Marcus; Nemesh, James; Handsaker, Robert; Paull, Daniel; Noggle, Scott; McCarroll, Steven; Joung, Keith; Woolf, Carl; Brown, Robert H; Eggan, KevinDirect electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron–device contact. Here, we demonstrate the realization of a three-dimensional macroporous nanoelectronic brain probe that combines ultra-flexibility and subcellular feature sizes to overcome these limitations. Built-in strains controlling the local geometry of the macroporous devices are designed to optimize the neuron/probe interface and to promote integration with the brain tissue while introducing minimal mechanical perturbation. The ultra-flexible probes were implanted frozen into rodent brains and used to record multiplexed local field potentials and single-unit action potentials from the somatosensory cortex. Significantly, histology analysis revealed filling-in of neural tissue through the macroporous network and attractive neuron–probe interactions, consistent with long-term biocompatibility of the device.