Person:
Yeung, Melissa

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Yeung

First Name

Melissa

Name

Yeung, Melissa

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Live Images of Donor Dendritic Cells Trafficking via CX3CR1 Pathway
    (Frontiers Media S.A., 2016) Ueno, Takuya; Kim, Pilhan; McGrath, Martina; Yeung, Melissa; Shimizu, Tetsunosuke; Jung, Keehoon; Sayegh, Mohamed; Chandraker, Anil; Abdi, Reza; Yun, Seok H.
    Background: A number of studies have demonstrated the role of CX3CR1 in regulating the migration of monocytes into peripheral tissue and their transformation into dendritic cell (DC). No data are yet available on the importance of chemokine pathways in regulating homeostasis of DC in heart transplants. Recently, we showed that recipients of heart allografts from CX3CR1−/− donors show longer survival. To assess the trafficking of dDC, we have developed and tested a novel in vivo imaging tool in CX3CR1GFP/+ DC (B6 background) heart graft into BALB/c recipient model. Results: Majority of GFP+ cells were noted in the middle of cardiac myocyte. However few hours post transplant, they experienced morphological changes including stretching their extensions (3 and 24 h). However, images from 72 h at cardiac graft showed many of GFP+ cells moved to vessel areas. GFP+ cells were detected in near vessel wall. Only one GFP+ cell was observed in three lymph nodes (two mesenteric and one inguinal) (72 h). Conclusion: Our data indicate that immediately post transplant dDC undergo morphological changes and traffic out of the organs via systemic circulation. While, we still noted presence of dDC in the transplanted organs, their trafficking to lymphoid tissue remains to be fully explored.
  • Thumbnail Image
    Publication
    The Limits of Linked Suppression for Regulatory T Cells
    (Frontiers Media S.A., 2016) Ito, Toshiro; Yamada, Akira; Batal, Ibrahim; Yeung, Melissa; McGrath, Martina; Sayegh, Mohamed; Chandraker, Anil; Ueno, Takuya
    Background: We have previously found that CD4+CD25+ regulatory T cells (Tregs) can adoptively transfer tolerance after its induction with costimulatory blockade in a mouse model of murine cardiac allograft transplantation. In these experiments, we tested an hypothesis with three components: (1) the Tregs that transfer tolerance have the capacity for linked suppression, (2) the determinants that stimulate the Tregs are expressed by the indirect pathway, and (3) the donor peptides contributing to these indirect determinants are derived from donor major histocompatibility complex (MHC) antigens (Ags). Methods: First heart transplants were performed from the indicated donor strain to B10.D2 recipients along with costimulatory blockade treatment (250 μg i.p. injection of MR1 on day 0 and 250 μg i.p. injection of CTLA-4 Ig on day 2). At least 8 weeks later, a second heart transplant was performed to a new B10.D2 recipient who had been irradiated with 450 cGy. This recipient was given 40 × 106 naive B10.D2 spleen cells + 40 × 106 B10.D2 spleen cells from the first (tolerant) recipient. We performed three different types of heart transplants using various donors. Results: (1) Tregs suppress the graft rejection in an Ag-specific manner. (2) Tregs generated in the face of MHC disparities suppress the rejection of grafts expressing third party MHC along with tolerant MHC. Conclusion: The limits of linkage appear to be quantitative and not universally determined by either the indirect pathway or by peptides of donor MHC Ags.
  • Thumbnail Image
    Publication
    Prolonged, Low-Dose Anti-Thymocyte Globulin, Combined with CTLA4-Ig, Promotes Engraftment in a Stringent Transplant Model
    (Public Library of Science, 2013) D’Addio, Francesca; Boenisch, Olaf; Magee, Ciara N; Yeung, Melissa; Yuan, Xueli; Mfarrej, Bechara; Vergani, Andrea; Ansari, Mohammed Javeed; Fiorina, Paolo; Najafian, Nader
    Background: Despite significant nephrotoxicity, calcineurin inhibitors (CNIs) remain the cornerstone of immunosuppression in solid organ transplantation. We, along with others, have reported tolerogenic properties of anti-thymocyte globulin (ATG, Thymoglobulin®), evinced by its ability both to spare Tregs from depletion in vivo and, when administered at low, non-depleting doses, to expand Tregs ex vivo. Clinical trials investigating B7/CD28 blockade (LEA29Y, Belatacept) in kidney transplant recipients have proven that the replacement of toxic CNI use is feasible in selected populations. Methods: Rabbit polyclonal anti-murine thymocyte globulin (mATG) was administered as induction and/or prolonged, low-dose therapy, in combination with CTLA4-Ig, in a stringent, fully MHC-mismatched murine skin transplant model to assess graft survival and mechanisms of action. Results: Prolonged, low-dose mATG, combined with CTLA4-Ig, effectively promotes engraftment in a stringent transplant model. Our data demonstrate that mATG achieves graft acceptance primarily by promoting Tregs, while CTLA4-Ig enhances mATG function by limiting activation of the effector T cell pool in the early stages of treatment, and by inhibiting production of anti-rabbit antibodies in the maintenance phase, thereby promoting regulation of alloreactivity. Conclusion: These data provide the rationale for development of novel, CNI-free clinical protocols in human transplant recipients.