Person:
Yamins, Daniel Louis Kanef

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Yamins

First Name

Daniel Louis Kanef

Name

Yamins, Daniel Louis Kanef

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    StarFlow: A Script-Centric Data Analysis Environment
    (Springer, 2010) Angelino, Elaine Lee; Yamins, Daniel Louis Kanef; Seltzer, Margo
    We introduce StarFlow, a script-centric environment for data analysis. StarFlow has four main features: (1) extraction of control and data-flow dependencies through a novel combination of static analysis, dynamic runtime analysis, and user annotations, (2) command-line tools for exploring and propagating changes through the resulting dependency network, (3) support for workflow abstractions enabling robust parallel executions of complex analysis pipelines, and (4) a seamless interface with the Python scripting language. We describe a range of real applications of StarFlow, including automatic parallelization of complex workflows in the cloud.
  • Thumbnail Image
    Publication
    Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum
    (Public Library of Science, 2011) Van tyne, Daria; Park, Daniel John; Schaffner, Stephen; Neafsey, Daniel; Angelino, Elaine Lee; Cortese, Joseph F.; Barnes, Kayla G.; Rosen, David M.; Lukens, Amanda; Daniels, Rachel; Milner, Danny; Johnson, Charles A.; Shlyakhter, Ilya; Grossman, Sharon; Becker, Justin S.; Yamins, Daniel Louis Kanef; Karlsson, Elinor K; Ndiaye, Daouda; Sarr, Ousmane; Mboup, Souleymane; Happi, Christian; Furlotte, Nicholas A.; Eskin, Eleazar; Kang, Hyun Min; Hartl, Daniel; Birren, Bruce W.; Wiegand, Roger; Lander, Eric; Wirth, Dyann; Volkman, Sarah; Sabeti, Pardis
    The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.