Person: Esfahani, Shadi
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Esfahani
First Name
Shadi
Name
Esfahani, Shadi
3 results
Search Results
Now showing 1 - 3 of 3
Publication Genotype Directed Therapy in Murine Mismatch Repair Deficient Tumors(Public Library of Science, 2013) Kucherlapati, Melanie; Esfahani, Shadi; Habibollahi, Peiman; Wang, Junning; Still, Eric R.; Bronson, Roderick; Mahmood, Umar; Kucherlapati, RajuThe PI3K/AKT/mTOR pathway has frequently been found activated in human tumors. We show that in addition to Wnt signaling dysfunction, the PI3K/AKT/mTOR pathway is often upregulated in mouse Msh2−/− initiated intestinal tumors. NVP-BEZ235 is a dual PI3K/mTOR inhibitor toxic to many cancer cell lines and currently involved in clinical trials. We have treated two mouse models involving Msh2 that develop small intestinal and/or colonic tumors with NVP-BEZ235, and a subset of animals with NVP-BEZ235 and MEK inhibitor ADZ4266. The disease phenotype has been followed with pathology, 18F FDG PET imaging, and endoscopy. Intestinal adenocarcinomas are significantly decreased in multiplicity by both drug regimens. The majority of tumors treated with combined therapy regress significantly, while a small number of highly progressed tumors persist. We have examined PTEN, AKT, MEK 1&2, MAPK, S6K, mTOR, PDPK1, and Cyclin D1 and find variable alterations that include downregulation of PTEN, upregulation of AKT and changes in its phosphorylated forms, upregulation of pMEK 1&2, p42p44MAPK, pS6K, and Cyclin D1. Apoptosis has been found intact in some tumors and not in others. Our data indicate that NVP-BEZ235 alone and in combination with ADZ4266 are effective in treating a proportion of colorectal cancers, but that highly progressed resistant tumors grow in the presence of the drugs. Pathways upregulated in some resistant tumors also include PDPK1, suggesting that metabolic inhibitors may also be useful in treating these tumors.Publication Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib(Nature Publishing Group, 2017) Collier, Thomas Lee; Normandin, Marc; Stephenson, Nickeisha A.; Livni, Eli; Liang, Huan; Wooten, Dustin; Esfahani, Shadi; Stabin, Michael G.; Mahmood, Umar; Chen, Jianqing; Wang, Wei; Maresca, Kevin; Waterhouse, Rikki N.; El Fakhri, Georges; Richardson, Paul; Vasdev, NeilLorlatinib (PF-06463922) is a next-generation small-molecule inhibitor of the orphan receptor tyrosine kinase c-ros oncogene 1 (ROS1), which has a kinase domain that is physiologically related to anaplastic lymphoma kinase (ALK), and is undergoing Phase I/II clinical trial investigations for non-small cell lung cancers. An early goal is to measure the concentrations of this drug in brain tumour lesions of lung cancer patients, as penetration of the blood–brain barrier is important for optimal therapeutic outcomes. Here we prepare both 11C- and 18F-isotopologues of lorlatinib to determine the biodistribution and whole-body dosimetry assessments by positron emission tomography (PET). Non-traditional radiolabelling strategies are employed to enable an automated multistep 11C-labelling process and an iodonium ylide-based radiofluorination. Carbon-11-labelled lorlatinib is routinely prepared with good radiochemical yields and shows reasonable tumour uptake in rodents. PET imaging in non-human primates confirms that this radiotracer has high brain permeability.Publication Optical Imaging of Mesenchymal Epithelial Transition Factor (MET) for Enhanced Detection and Characterization of Primary and Metastatic Hepatic Tumors(Ivyspring International Publisher, 2016) Esfahani, Shadi; Heidari, Pedram; Kim, Sun A.; Ogino, Shuji; Mahmood, UmarPurpose: To assess optical imaging of Mesenchymal-Epithelial Transition factor (MET) for delineation and characterization of intrahepatic models of human hepatocellular carcinoma (HCC) and metastatic colorectal cancer (CRC), and thereby demonstrate its potential use in precision oncology. Materials and Methods: MET expression in human CRC and HCC was assessed in tissue microarrays. We used GE-137, a modified cyanine 5-tagged peptide for MET targeting. HepG2 and Huh-7 (HCC) and HT-29 (CRC) cells with MET overexpression, and LNCaP cells (negative control) with minimal MET expression were incubated with the probe. Correlation between the relative fluorescence signal intensity and cellular MET expression level was assessed. Flow cytometry was used to assess probe specific binding and dissociation constant (Kd). Orthotopic xenograft models of human HCC and metastatic CRC were generated in nu/nu mice by subcapsular implantation of cells. Epifluorescence imaging was performed to capture the changes in deferential probe accumulation at different time points after injection. Target-to-liver background ratio (TBR) was calculated and the probe biodistribution within different organs was assessed. Histopathologic analysis of extracted xenografts was performed to correlate the tumors MET expression with probe uptake by cancer cells. Results: Approximately 91.5% of HCC and 81% of CRC microarray cores showed MET expression. HCC and CRC cells incubated with the probe showed substantial fluorescence compared to control LNCaP, with strong correlation between fluorescence signal and MET expression (R2 = 0.99, p < 0.001). Probe binding affinity to MET (Kd) was measured to be 2.9 ± 0.36 nM. Epifluorescence imaging showed intense uptake in subcapsular tumors with peak TBR of 5.46 ± 0.46 in Huh-7, 3.55 ± 0.38 in HepG2, and 15.93 ± 0.61 in HT-29 orthotopic xenografts at 4 hours post-injection (mean ± standard deviation). We demonstrated that in vivo probe uptake in xenografts is specific and can be blocked when co-injected with unlabeled peptide; for instance the epifluorescence TBR is reduced from 13.5 ± 1.2 to 1.7 ± 0.3 (p < 0.05) in HT-29 and from 5.3 ± 0.8 to 1.4 ± 0.2 (p < 0.05) in Huh-7 xenografts after co-injection with unlabeled peptides. Biodistribution studies showed predominantly renal clearance of the probe. Conclusion: Optical imaging of MET resulted in high TBR in animal models of primary and metastatic hepatic tumors suggesting its utility for procedural guidance.