Person:
Samuel, Aravi

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Samuel

First Name

Aravi

Name

Samuel, Aravi

Search Results

Now showing 1 - 10 of 37
  • Publication
    Connectomes across development reveal principles of brain maturation
    (Cold Spring Harbor Laboratory, 2020-04-30) Witvliet, Daniel; Mulcahy, Ben; Mitchell, James; Meirovitch, Yaron; Berger, Daniel; Wu, Yuelong; Liu, Yufang; Koh, Wan Xian; Parvathala, Rajeev; Holmyard, Douglas; Schalek, Richard; Shavit, Nir; Chisholm, Andrew; Lichtman, Jeff; Samuel, Aravi; Zhen, Mei
    From birth to adulthood, an animal’s nervous system changes as its body grows and its behaviours mature. The form and extent of circuit remodelling across the connectome is unknown. We used serial-section electron microscopy to reconstruct the full brain of eight isogenic C. elegans individuals across postnatal stages to learn how it changes with age. The overall geometry of the nervous system is preserved from birth to adulthood. Upon this constant scaffold, substantial changes in chemical synaptic connectivity emerge. Comparing connectomes among individuals reveals substantial connectivity differences that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. Over development, the central decision-making circuitry is maintained whereas sensory and motor pathways substantially remodel. With age, the brain progressively becomes more feedforward and discernibly modular. Developmental connectomics reveals principles that underlie brain maturation.
  • Thumbnail Image
    Publication
    Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics
    (eLife Sciences Publications, Ltd, 2015) Hernandez-Nunez, Luis; Belina, Jonas; Klein, Mason; Si, Guangwei; Claus, Lindsey; Carlson, John R; Samuel, Aravi
    Neural circuits for behavior transform sensory inputs into motor outputs in patterns with strategic value. Determining how neurons along a sensorimotor circuit contribute to this transformation is central to understanding behavior. To do this, a quantitative framework to describe behavioral dynamics is needed. In this study, we built a high-throughput optogenetic system for Drosophila larva to quantify the sensorimotor transformations underlying navigational behavior. We express CsChrimson, a red-shifted variant of channelrhodopsin, in specific chemosensory neurons and expose large numbers of freely moving animals to random optogenetic activation patterns. We quantify their behavioral responses and use reverse-correlation analysis to uncover the linear and static nonlinear components of navigation dynamics as functions of optogenetic activation patterns of specific sensory neurons. We find that linear–nonlinear models accurately predict navigational decision-making for different optogenetic activation waveforms. We use our method to establish the valence and dynamics of navigation driven by optogenetic activation of different combinations of bitter-sensing gustatory neurons. Our method captures the dynamics of optogenetically induced behavior in compact, quantitative transformations that can be used to characterize circuits for sensorimotor processing and their contribution to navigational decision making. DOI: http://dx.doi.org/10.7554/eLife.06225.001
  • Thumbnail Image
    Publication
    The wiring diagram of a glomerular olfactory system
    (eLife Sciences Publications, Ltd, 2016) Berck, Matthew; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravi; Cardona, Albert
    The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001
  • Thumbnail Image
    Publication
    Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues
    (Nature Publishing Group UK, 2018) Humberg, Tim-Henning; Bruegger, Pascal; Afonso, Bruno; Zlatic, Marta; Truman, James W.; Gershow, Marc; Samuel, Aravi; Sprecher, Simon G.
    To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
  • Thumbnail Image
    Publication
    Proprioceptive Coupling within Motor Neurons Drives C. Elegans Forward Locomotion
    (Elsevier BV, 2012) Wen, Quan; Po, Michelle D.; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M.; Butler, Victoria; Fang-Yen, Christopher M.; Kawano, Taizo; Schafer, William R.; Whitesides, George; Wyart, Matthieu; Chklovskii, Dmitri B.; Zhen, Mei; Samuel, Aravi
    Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.
  • Thumbnail Image
    Publication
    Shifts in the Distribution of Mass Densities Is a Signature of Caloric Restriction in Caenorhabditis elegans
    (Public Library of Science, 2013) Reina, Alfonso; Subramaniam, Anand; Laromaine, Anna; Samuel, Aravi; Whitesides, George
    Although the starvation response of the model multicellular organism Caenorhabditis elegans is a subject of much research, there is no convenient phenotypic readout of caloric restriction that can be applicable to large numbers of worms. This paper describes the distribution of mass densities of populations of C. elegans, from larval stages up to day one of adulthood, using isopycnic centrifugation, and finds that density is a convenient, if complex, phenotypic readout in C. elegans. The density of worms in synchronized populations of wildtype N2 C. elegans grown under standard solid-phase culture conditions was normally distributed, with distributions peaked sharply at a mean of 1.091 g/cm3 for L1, L2 and L3 larvae, 1.087 g/cm3 for L4 larvae, 1.081 g/cm3 for newly molted adults, and 1.074 g/cm3 at 24 hours of adulthood. The density of adult worms under starvation stress fell well outside this range, falling to a mean value of 1.054 g/cm3 after eight hours of starvation. This decrease in density correlated with the consumption of stored glycogen in the food-deprived worms. The density of the worms increased when deprived of food for longer durations, corresponding to a shift in the response of the worms: worms sacrifice their bodies by retaining larvae, which consume the adults from within. Density-based screens with the drug Ivermectin on worms cultured on single plates resulted in a clear bimodal (double-peaked) distribution of densities corresponding to drug exposed and non-exposed worms. Thus, measurements of changes in density could be used to conduct screens on the effects of drugs on several populations of worms cultured on single plates.
  • Thumbnail Image
    Publication
    Controlling Airborne Cues to Study Small Animal Navigation
    (Nature Publishing Group, 2012) Gershow, Marc; Berck, Matthew; Mathew, Dennis; Luo, Linjiao; Kane, Elizabeth; Carlson, John R; Samuel, Aravi
    Small animals such as nematodes and insects analyze airborne chemical cues to infer the direction of favorable and noxious locations. In these animals, the study of navigational behavior evoked by airborne cues has been limited by the difficulty of precisely controlling stimuli. We present a system that can be used to deliver gaseous stimuli in defined spatial and temporal patterns to freely moving small animals. We used this apparatus, in combination with machine-vision algorithms, to assess and quantify navigational decision making of Drosophila melanogaster larvae in response to ethyl acetate (a volatile attractant) and carbon dioxide (a gaseous repellant).
  • Thumbnail Image
    Publication
    Functional diversity among sensory receptors in a Drosophila olfactory circuit
    (Proceedings of the National Academy of Sciences, 2013) Mathew, Dennis; Martelli, Carlotta; Kelley-Swift, Elizabeth; Brusalis, Christopher; Gershow, Marc; Samuel, Aravi; Emonet, Thierry; Carlson, John R.
    The ability of an animal to detect, discriminate, and respond to odors depends on the function of its olfactory receptor neurons (ORNs), which in turn depends ultimately on odorant receptors. To understand the diverse mechanisms used by an animal in olfactory coding and computation, it is essential to understand the functional diversity of its odor receptors. The larval olfactory system of Drosophila melanogaster contains 21 ORNs and a comparable number of odorant receptors whose properties have been examined in only a limited way. We systematically screened them with a panel of ∼500 odorants, yielding >10,000 receptor–odorant combinations. We identify for each of 19 receptors an odorant that excites it strongly. The responses elicited by each of these odorants are analyzed in detail. The odorants elicited little cross-activation of other receptors at the test concentration; thus, low concentrations of many of these odorants in nature may be signaled by a single ORN. The receptors differed dramatically in sensitivity to their cognate odorants. The responses showed diverse temporal dynamics, with some odorants eliciting supersustained responses. An intriguing question in thefield concerns the roles of different ORNs and receptors in driving behavior. We found that the cognate odorants elicited behavioral responses that varied across a broad range. Some odorants elicited strong physiological responses but weak behavioral responses or weak physiological responses but strong behavioral responses.
  • Thumbnail Image
    Publication
    Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans
    (Proceedings of the National Academy of Sciences, 2016) Narayan, Anusha; Venkatachalam, Vivek; Durak, Omer; Reilly, Douglas K.; Bose, Neelanjan; Schroeder, Frank C.; Samuel, Aravi; Srinivasan, Jagan; Sternberg, Paul W.
    Animals find mates and food, and avoid predators, by navigating to regions within a favorable range of available sensory cues. How are these ranges set and recognized? Here we show that male Caenorhabditis elegans exhibit strong concentration preferences for sex-specific small molecule cues secreted by hermaphrodites, and that these preferences emerge from the collective dynamics of a single male-specific class of neurons, the cephalic sensory neurons (CEMs). Within a single worm, CEM responses are dissimilar, not determined by anatomical classification and can be excitatory or inhibitory. Response kinetics vary by concentration, suggesting a mechanism for establishing preferences. CEM responses are enhanced in the absence of synaptic transmission, and worms with only one intact CEM show nonpreferential attraction to all concentrations of ascaroside for which CEM is the primary sensor, suggesting that synaptic modulation of CEM responses is necessary for establishing preferences. A heterogeneous concentration-dependent sensory representation thus appears to allow a single neural class to set behavioral preferences and recognize ranges of sensory cues.
  • Thumbnail Image
    Publication
    Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons
    (Proceedings of the National Academy of Sciences, 2014) Luo, Linjiao; Cook, N.; Venkatachalam, Vivek; Martinez-Velazquez, L. A.; Zhang, Xiaosong; Calvo, A. C.; Hawk, J.; Macinnis, Bronwyn; Frank, Michelle; Ng, J. H. R.; Klein, Mason; Gershow, Marc; Hammarlund, M.; Goodman, M. B.; Colon-Ramos, D. A.; Zhang, Y.; Samuel, Aravi
    The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (Ts) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above Ts (negative thermotaxis) and performs isothermal tracking near Ts. Under some conditions, the worm migrates up temperature gradients below Ts (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward Ts to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below Ts. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.