Person: Vasdev, Neil
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Vasdev
First Name
Neil
Name
Vasdev, Neil
12 results
Search Results
Now showing 1 - 10 of 12
Publication Synthesis of [ 11 C]Bexarotene by Cu-Mediated [ 11 C]Carbon Dioxide Fixation and Preliminary PET Imaging(American Chemical Society (ACS), 2014) Rotstein, Benjamin H.; Hooker, Jacob; Woo, Jiyeon; Collier, Thomas L; Brady, Thomas; Liang, Steven; Vasdev, NeilPublication 11CO2 Fixation: A Renaissance in PET Radiochemistry(Royal Society of Chemistry, 2013) Rotstein, Benjamin H.; Liang, Steven; Holland, Jason P; Collier, Thomas L; Hooker, Jacob; Wilson, Alan A.; Vasdev, NeilCarbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [11C]CO2. In recent years, [11C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [11C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [11C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.Publication PET Imaging of Fatty Acid Amide Hydrolase with [18F]DOPP in Nonhuman Primates(American Chemical Society, 2014) Rotstein, Benjamin H.; Wey, Hsiao-Ying; Shoup, Timothy M.; Wilson, Alan A.; Liang, Huan; Hooker, Jacob; Vasdev, NeilFatty acid amide hydrolase (FAAH) regulates endocannabinoid signaling. [11C]CURB, an irreversibly binding FAAH inhibitor, has been developed for clinical research imaging with PET. However, no fluorine-18 labeled radiotracer for FAAH has yet advanced to human studies. [18F]DOPP ([18F]3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate) has been identified as a promising 18F-labeled analogue based on rodent studies. The goal of this work is to evaluate [18F]DOPP in nonhuman primates to support its clinical translation. High specific activity [18F]DOPP (5–6 Ci·μmol–1) was administered intravenously (iv) to three baboons (2M/1F, 3–4 years old). The distribution and pharmacokinetics were quantified following a 2 h dynamic imaging session using a simultaneous PET/MR scanner. Pretreatment with the FAAH-selective inhibitor, URB597, was carried out at 200 or 300 μg/kg iv, 10 min prior to [18F]DOPP administration. Rapid arterial blood sampling for the first 3 min was followed by interval sampling with metabolite analysis to provide a parent radiotracer plasma input function that indicated ∼95% baseline metabolism at 60 min and a reduced rate of metabolism after pretreatment with URB597. Regional distribution data were analyzed with 1-, 2-, and 3-tissue compartment models (TCMs), with and without irreversible trapping since [18F]DOPP covalently links to the active site of FAAH. Consistent with previous findings for [11C]CURB, the 2TCM with irreversible binding was found to provide the best fit for modeling the data in all regions. The composite parameter λk3 was therefore used to evaluate whole brain (WB) and regional binding of [18F]DOPP. Pretreatment studies showed inhibition of λk3 across all brain regions (WB baseline: 0.112 mL/cm3/min; 300 μg/kg URB597: 0.058 mL/cm3/min), suggesting that [18F]DOPP binding is specific for FAAH, consistent with previous rodent data.Publication Synthesis and Preclinical Evaluation of Sulfonamido-based [11C-Carbonyl]-Carbamates and Ureas for Imaging Monoacylglycerol Lipase(Ivyspring International Publisher, 2016) Wang, Lu; Mori, Wakana; Cheng, Ran; Yui, Joji; Hatori, Akiko; Ma, Longle; Zhang, Yiding; Rotstein, Benjamin H.; Fujinaga, Masayuki; Shimoda, Yoko; Yamasaki, Tomoteru; Xie, Lin; Nagai, Yuji; Minamimoto, Takafumi; Higuchi, Makoto; Vasdev, Neil; Zhang, Ming-Rong; Liang, HuanMonoacylglycerol lipase (MAGL) is a 33 kDa member of the serine hydrolase superfamily that preferentially degrades 2-arachidonoylglycerol (2-AG) to arachidonic acid in the endocannabinoid system. Inhibition of MAGL is not only of interest for probing the cannabinoid pathway but also as a therapeutic and diagnostic target for neuroinflammation. Limited attempts have been made to image MAGL in vivo and a suitable PET ligand for this target has yet to be identified and is urgently sought to guide small molecule drug development in this pathway. Herein we synthesized and evaluated the physiochemical properties of an array of eleven sulfonamido-based carbamates and ureas with a series of terminal aryl moieties, linkers and leaving groups. The most potent compounds were a novel MAGL inhibitor, N-((1-(1H-1,2,4-triazole-1-carbonyl)piperidin-4-yl) methyl)-4-chlorobenzenesulfonamide (TZPU; IC50 = 35.9 nM), and the known inhibitor 1,1,1,3,3,3-hexafluoropropan-2-yl 4-(((4-chlorophenyl)sulfonamido) methyl)piperidine-1-carboxylate (SAR127303; IC50 = 39.3 nM), which were also shown to be selective for MAGL over fatty acid amide hydrolase (FAAH), and cannabinoid receptors (CB1 & CB2). Both of these compounds were radiolabeled with carbon-11 via [11C]COCl2, followed by comprehensive ex vivo biodistribution and in vivo PET imaging studies in normal rats to determine their brain permeability, specificity, clearance and metabolism. Whereas TZPU did not show adequate specificity to warrant further evaluation, [11C]SAR127303 was advanced for preliminary PET neuroimaging studies in nonhuman primate. The tracer showed good brain permeability (ca. 1 SUV) and heterogeneous regional brain distribution which is consistent with the distribution of MAGL.Publication Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis(MDPI, 2016) Vasdev, Neil; Collier, Thomas LeeColumn-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer.Publication Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib(Nature Publishing Group, 2017) Collier, Thomas Lee; Normandin, Marc; Stephenson, Nickeisha A.; Livni, Eli; Liang, Huan; Wooten, Dustin; Esfahani, Shadi; Stabin, Michael G.; Mahmood, Umar; Chen, Jianqing; Wang, Wei; Maresca, Kevin; Waterhouse, Rikki N.; El Fakhri, Georges; Richardson, Paul; Vasdev, NeilLorlatinib (PF-06463922) is a next-generation small-molecule inhibitor of the orphan receptor tyrosine kinase c-ros oncogene 1 (ROS1), which has a kinase domain that is physiologically related to anaplastic lymphoma kinase (ALK), and is undergoing Phase I/II clinical trial investigations for non-small cell lung cancers. An early goal is to measure the concentrations of this drug in brain tumour lesions of lung cancer patients, as penetration of the blood–brain barrier is important for optimal therapeutic outcomes. Here we prepare both 11C- and 18F-isotopologues of lorlatinib to determine the biodistribution and whole-body dosimetry assessments by positron emission tomography (PET). Non-traditional radiolabelling strategies are employed to enable an automated multistep 11C-labelling process and an iodonium ylide-based radiofluorination. Carbon-11-labelled lorlatinib is routinely prepared with good radiochemical yields and shows reasonable tumour uptake in rodents. PET imaging in non-human primates confirms that this radiotracer has high brain permeability.Publication Practical Radiosynthesis and Preclinical Neuroimaging of [11C]isradipine, A Calcium Channel Antagonist(2016) Rotstein, Benjamin H.; Liang, Huan; Belov, Vasily; Livni, Eli; Levine, Dylan B.; Bonab, Ali A.; Papisov, Mikhail; Perlis, Roy H.; Vasdev, NeilIn the interest of developing in vivo positron emission tomography (PET) probes for neuroimaging of calcium channels, we have prepared a carbon-11 isotopologue of a dihydropyridine Ca2+-channel antagonist, isradipine. Desmethyl isradipine (4-(benzo[c][1,2,5]oxadiazol-4-yl)-5-(isopropoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine -3-carboxylic acid) was reacted with [11C]CH3I in the presence of tetrabutylammonium hydroxide in DMF in an HPLC injector loop to produce the radiotracer in a good yield (6 ± 3% uncorrected radiochemical yield) and high specific activity (143 ± 90 GBq·μmol−1 at end-of-synthesis). PET imaging of normal rats revealed rapid brain uptake at baseline (0.37 ± 0.08 %ID/cc (percent of injected dose per cubic centimeter) at peak, 15–60 s), which was followed by fast washout. After pretreatment with isradipine (2 mg·kg−1, i.p.), whole brain radioactivity uptake was diminished by 25–40%. This preliminary study confirms that [11C]isradipine can be synthesized routinely for research studies and is brain penetrating. Further work on Ca2+-channel radiotracer development is planned.Publication Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02778g Click here for additional data file.(Royal Society of Chemistry, 2014) Boros, Eszter; Bowen, Alice M.; Josephson, Lee; Vasdev, Neil; Holland, Jason P.A novel reaction for chelate-free, heat-induced metal ion binding and radiolabeling of ultra-small paramagnetic iron oxide nanoparticles (USPIOs) has been established. Radiochemical and non-radioactive labeling studies demonstrated that the reaction has a wide chemical scope and is applicable to p-, d- and f-block metal ions with varying ionic sizes and formal oxidation states from 2+ to 4+. Radiolabeling studies found that 89Zr–Feraheme (89Zr–FH or 89Zr–ferumoxytol) can be isolated in 93 ± 3% radiochemical yield (RCY) and >98% radiochemical purity using size-exclusion chromatography. 89Zr–FH was found to be thermodynamically and kinetically stable in vitro using a series of ligand challenge and plasma stability tests, and in vivo using PET/CT imaging and biodistribution studies in mice. Remarkably, ICP-MS and radiochemistry experiments showed that the same reaction conditions used to produce 89Zr–FH can be employed with different radionuclides to yield 64Cu–FH (66 ± 6% RCY) and 111In–FH (91 ± 2% RCY). Electron magnetic resonance studies support a mechanism of binding involving metal ion association with the surface of the magnetite crystal core. Collectively, these data suggest that chelate-free labeling methods can be employed to facilitate clinical translation of a new class of multimodality PET/MRI radiotracers derived from metal-based nanoparticles. Further, this discovery is likely to have broader implications in drug delivery, metal separation science, ecotoxicology of nanoparticles and beyond.Publication Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells(BioMed Central, 2016) Ding, Yahui; Gao, Huier; Zhang, Yu; Li, Ye; Vasdev, Neil; Gao, Yingdai; Chen, Yue; Zhang, QuanBackground: The poor outcomes for patients diagnosed with acute myeloid leukemia (AML) are largely attributed to leukemia stem cells (LSCs) which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods: The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results: The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C), alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions: Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0327-5) contains supplementary material, which is available to authorized users.Publication Brain Penetration of the ROS1/ALK Inhibitor Lorlatinib Confirmed by PET(SAGE Publications, 2017) Collier, T. Lee; Maresca, Kevin P.; Normandin, Marc; Richardson, Paul; McCarthy, Timothy J.; Liang, Huan; Waterhouse, Rikki N.; Vasdev, NeilThe Massachusetts General Hospital Radiochemistry Program, in collaboration with Pfizer, has developed unique 11C and 18F-labeling strategies to synthesize isotopologs of lorlatinib (PF-06463922) which is undergoing phase III clinical trial investigations for treatment of non-small-cell lung cancers with specific molecular alterations. A major goal in cancer therapeutics is to measure the concentrations of this drug in the brain metastases of patients with lung cancer, and penetration of the blood–brain barrier is important for optimal therapeutic outcomes. Our recent publication in Nature Communications employed radiolabeled lorlatinib and positron emission tomography (PET) studies in preclinical models including nonhuman primates (NHPs) that demonstrated high brain permeability of this compound. Our future work with radiolabeled lorlatinib will include advanced PET evaluations in rodent tumor models and normal NHPs with the goal of clinical translation.