Person: Barouch, Dan
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Barouch
First Name
Dan
Name
Barouch, Dan
39 results
Search Results
Now showing 1 - 10 of 39
Publication Vaccine Protection Against Zika Virus from Brazil(2016) Larocca, Rafael; Abbink, Peter; Peron, Jean Pierre S.; de A. Zanotto, Paolo M.; Iampietro, M. Justin; Badamchi-Zadeh, Alexander; Boyd, Michael; Ng’ang’a, David; Kirilova, Marinela; Nityanandam, Ramya; Mercado, Noe B.; Li, Zhenfeng; Moseley, Edward T.; Bricault, Christine; Borducchi, Erica N.; Giglio, Patricia B.; Jetton, David; Neubauer, George; Nkolola, Joseph; Maxfield, Lori; De La Barrera, Rafael A.; Jarman, Richard G.; Eckels, Kenneth H.; Michael, Nelson L.; Thomas, Stephen J.; Barouch, DanZika virus (ZIKV) is a flavivirus that is responsible for an unprecedented current epidemic in Brazil and the Americas1,2. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans3–8 and mice9–11. The rapid development of a safe and effective ZIKV vaccine is a global health priority1,2, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization of a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a ZIKV outbreak strain from northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice11. We produced DNA vaccines expressing full-length ZIKV pre-membrane and envelope (prM-Env) as well as a series of deletion mutants. The full-length prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV as measured by absence of detectable viremia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and CD4 and CD8 T lymphocyte depletion in vaccinated mice did not abrogate protective efficacy. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans will likely be readily achievable.Publication Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells(Cell Press, 2017) Gaya, Mauro; Barral, Patricia; Burbage, Marianne; Aggarwal, Shweta; Montaner, Beatriz; Warren Navia, Andrew; Aid, Malika; Tsui, Carlson; Maldonado, Paula; Nair, Usha; Ghneim, Khader; Fallon, Padraic G.; Sekaly, Rafick-Pierre; Barouch, Dan; Shalek, Alex K.; Bruckbauer, Andreas; Strid, Jessica; Batista, FacundoSummary B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.Publication Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV(Elsevier, 2018) Brown, Eric P.; Weiner, Joshua A.; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E.The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness.Publication Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection(American Society for Microbiology, 2018) Blass, Eryn; Aid, Malika; Martinot, Amanda; Larocca, Rafael; Kang, Zi Han; Badamchi-Zadeh, Alexander; Penaloza-MacMaster, Pablo; Reeves, R. Keith; Barouch, DanABSTRACT Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a “rheostat” function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection. IMPORTANCE: Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.Publication Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice(American Society for Microbiology, 2018) Badamchi-Zadeh, Alexander; Tartaglia, Lawrence; Abbink, Peter; Bricault, Christine; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B.; Nanayakkara, Ovini S.; Vrbanac, Vladimir D.; Tager, Andrew M.; Larocca, Rafael; Seaman, Michael; Barouch, DanABSTRACT Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo. Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE: Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice.Publication Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors(Nature Publishing Group UK, 2018) López-Camacho, César; Abbink, Peter; Larocca, Rafael; Dejnirattisai, Wanwisa; Boyd, Michael; Badamchi-Zadeh, Alex; Wallace, Zoë R.; Doig, Jennifer; Velazquez, Ricardo Sanchez; Neto, Roberto Dias Lins; Coelho, Danilo F.; Kim, Young Chan; Donald, Claire L.; Owsianka, Ania; De Lorenzo, Giuditta; Kohl, Alain; Gilbert, Sarah C.; Dorrell, Lucy; Mongkolsapaya, Juthathip; Patel, Arvind H.; Screaton, Gavin R.; Barouch, Dan; Hill, Adrian V. S.; Reyes-Sandoval, ArturoZika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.Publication Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques(Public Library of Science, 2017) McCracken, Michael K.; Gromowski, Gregory D.; Friberg, Heather L.; Lin, Xiaoxu; Abbink, Peter; De La Barrera, Rafael; Eckles, Kenneth H.; Garver, Lindsey S.; Boyd, Michael; Jetton, David; Barouch, Dan; Wise, Matthew C.; Lewis, Bridget S.; Currier, Jeffrey R.; Modjarrad, Kayvon; Milazzo, Mark; Liu, Michelle; Mullins, Anna B.; Putnak, J. Robert; Michael, Nelson L.; Jarman, Richard G.; Thomas, Stephen J.Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.Publication Neutralizing Antibody Responses following Long-Term Vaccination with HIV-1 Env gp140 in Guinea Pigs(American Society for Microbiology, 2018) Bricault, Christine; Kovacs, James M.; Badamchi-Zadeh, Alexander; McKee, Krisha; Shields, Jennifer L.; Gunn, Bronwyn; Neubauer, George H.; Ghantous, Fadi; Jennings, Julia; Gillis, Lindsey; Perry, James; Nkolola, Joseph; Alter, Galit; Chen, Bing; Stephenson, Kathryn; Doria-Rose, Nicole; Mascola, John R.; Seaman, Michael; Barouch, DanABSTRACT A vaccination regimen capable of eliciting potent and broadly neutralizing antibodies (bNAbs) remains an unachieved goal of the HIV-1 vaccine field. Here, we report the immunogenicity of longitudinal prime/boost vaccination regimens with a panel of HIV-1 envelope (Env) gp140 protein immunogens over a period of 200 weeks in guinea pigs. We assessed vaccine regimens that included a monovalent clade C gp140 (C97ZA012 [C97]), a tetravalent regimen consisting of four clade C gp140s (C97ZA012, 459C, 405C, and 939C [4C]), and a tetravalent regimen consisting of clade A, B, C, and mosaic gp140s (92UG037, PVO.4, C97ZA012, and Mosaic 3.1, respectively [ABCM]). We found that the 4C and ABCM prime/boost regimens were capable of eliciting greater magnitude and breadth of binding antibody responses targeting variable loop 2 (V2) over time than the monovalent C97-only regimen. The longitudinal boosting regimen conducted over more than 2 years increased the magnitude of certain tier 1 NAb responses but did not increase the magnitude or breadth of heterologous tier 2 NAb responses. These data suggest that additional immunogen design strategies are needed to induce broad, high-titer tier 2 NAb responses. IMPORTANCE: The elicitation of potent, broadly neutralizing antibodies (bNAbs) remains an elusive goal for the HIV-1 vaccine field. In this study, we explored the use of a long-term vaccination regimen with different immunogens to determine if we could elicit bNAbs in guinea pigs. We found that longitudinal boosting over more than 2 years increased tier 1 NAb responses but did not increase the magnitude and breadth of tier 2 NAb responses. These data suggest that additional immunogen designs and vaccination strategies will be necessary to induce broad tier 2 NAb responses.Publication Immunogenicity and Cross-Reactivity of Rhesus Adenoviral Vectors(American Society for Microbiology, 2018) Iampietro, M. Justin; Larocca, Rafael; Provine, Nicholas M.; Abbink, Peter; Kang, Zi Han; Bricault, Christine; Barouch, DanABSTRACT Adenovirus (Ad) vectors are being investigated as vaccine candidates, but baseline antivector immunity exists in human populations to both human Ad (HuAd) and chimpanzee Ad (ChAd) vectors. In this study, we investigated the immunogenicity and cross-reactivity of a panel of recently described rhesus adenoviral (RhAd) vectors. RhAd vectors elicited T cells with low exhaustion markers and robust anamnestic potential. Moreover, RhAd vector immunogenicity was unaffected by high levels of preexisting anti-HuAd immunity. Both HuAd/RhAd and RhAd/RhAd prime-boost vaccine regimens were highly immunogenic, despite a degree of cross-reactive neutralizing antibodies (NAbs) between phylogenetically related RhAd vectors. We observed extensive vector-specific cross-reactive CD4 T cell responses and more limited CD8 T cell responses between RhAd and HuAd vectors, but the impact of vector-specific cellular responses was far less than that of vector-specific NAbs. These data suggest the potential utility of RhAd vectors and define novel heterologous prime-boost strategies for vaccine development. IMPORTANCE: To date, most adenoviral vectors developed for vaccination have been HuAds from species B, C, D, and E, and human populations display moderate to high levels of preexisting immunity. There is a clinical need for new adenoviral vectors that are not hindered by preexisting immunity. Moreover, the development of RhAd vector vaccines expands our ability to vaccinate against multiple pathogens in a population that may have received other HuAd or ChAd vectors. We evaluated the immunogenicity and cross-reactivity of RhAd vectors, which belong to the poorly described adenovirus species G. These vectors induced robust cellular and humoral immune responses and were not hampered by preexisting anti-HuAd vector immunity. Such properties make RhAd vectors attractive as potential vaccine vectors.Publication Therapeutic Efficacy of Potent Neutralizing HIV-1-Specific Monoclonal Antibodies in SHIV-Infected Rhesus Monkeys(2014) Barouch, Dan; Whitney, James; Moldt, Brian; Klein, Florian; Oliveira, Thiago Y.; Liu, Jinyan; Stephenson, Kathryn; Chang, Hui-Wen; Shekhar, Karthik; Gupta, Sanjana; Nkolola, Joseph; Seaman, Michael; Smith, Kaitlin M.; Borducchi, Erica N.; Cabral, Crystal; Smith, Jeffrey Y.; Blackmore, Stephen; Sanisetty, Srisowmya; Perry, James R.; Beck, Matthew; Lewis, Mark G.; Rinaldi, William; Chakraborty, Arup K.; Poignard, Pascal; Nussenzweig, Michel C.; Burton, Dennis R.HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have recently been described. In humanized mice, combinations of mAbs have been shown to suppress viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and lymph nodes without the development of viral resistance. Moreover, following mAb administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus rebounded in the majority of animals after a median of 56 days when serum mAb titers had declined to undetectable levels, although a subset of animals maintained long-term virologic control in the absence of further mAb infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of mAb therapy for HIV-1 in humans.