Person:
Carlezon, William

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Carlezon

First Name

William

Name

Carlezon, William

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Quantified Coexpression Analysis of Central Amygdala Subpopulations
    (Society for Neuroscience, 2018) McCullough, Kenneth; Morrison, Filomene G.; Hartmann, Jakob; Carlezon, William; Ressler, Kerry
    Abstract Molecular identification and characterization of fear controlling circuitries is a promising path towards developing targeted treatments of fear-related disorders. Three-color in situ hybridization analysis was used to determine whether somatostatin (SOM, Sst), neurotensin (NTS, Nts), corticotropin-releasing factor (CRF, Crf), tachykinin 2 (TAC2, Tac2), protein kinase c-δ (PKC-δ, Prkcd), and dopamine receptor 2 (DRD2, Drd2) mRNA colocalize in male mouse amygdala neurons. Expression and colocalization was examined across capsular (CeC), lateral (CeL), and medial (CeM) compartments of the central amygdala. The greatest expression of Prkcd and Drd2 were found in CeC and CeL. Crf was expressed primarily in CeL, while Sst-, Nts-, and Tac2-expressing neurons were distributed between CeL and CeM. High levels of colocalization were identified between Sst, Nts, Crf, and Tac2 within the CeL, while little colocalization was detected between any mRNAs within the CeM. These findings provide a more detailed understanding of the molecular mechanisms that regulate the development and maintenance of fear and anxiety behaviors.
  • Thumbnail Image
    Publication
    Selective κ Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters
    (Public Library of Science, 2013) Munro, Thomas A.; Huang, Xi-Ping; Inglese, Carmela; Perrone, Maria Grazia; Van't Veer, Ashlee Victoria; Carroll, F. Ivy; Béguin, Cécile; Carlezon, William; Colabufo, Nicola A.; Cohen, Bruce; Roth, Bryan L.
    Background: Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results: In binding assays, the three antagonists showed no detectable affinity (Ki≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (Ki = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (KB = 3.7 µM). JDTic bound to the noradrenaline transporter (Ki = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (Ki = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions: Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.
  • Thumbnail Image
    Publication
    Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund’s adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats
    (BioMed Central, 2014) Leitl, Michael D; Potter, David N; Cheng, Kejun; Rice, Kenner C; Carlezon, William; Negus, S Stevens
    Background: Intraplantar administration of complete Freund's adjuvant (CFA) and formalin are two noxious stimuli commonly used to produce sustained pain-related behaviors in rodents for research on neurobiology and treatment of pain. One clinically relevant manifestation of pain is depression of behavior and mood. This study compared effects of intraplantar CFA and formalin on depression of positively reinforced operant behavior in an assay of intracranial self-stimulation (ICSS) in rats. Effects of CFA and formalin on other physiological and behavioral measures, and opioid effects on formalin-induced depression of ICSS, were also examined. Results: There were four main findings. First, consistent with previous studies, both CFA and formalin produced similar paw swelling and mechanical hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. Third, formalin-induced depression of ICSS was reversed by morphine doses that did not significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be interpreted as an example of pain-related and analgesic-reversible depression of behavior. Finally, formalin-induced depression of ICSS was not associated with changes in central biomarkers for activation of endogenous kappa opioid systems, which have been implicated in depressive-like states in rodents, nor was it blocked by the kappa antagonist norbinaltorphimine. Conclusions: These results suggest differential efficacy of sustained pain stimuli to depress brain reward function in rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage brain kappa opioid systems. Electronic supplementary material The online version of this article (doi:10.1186/1744-8069-10-62) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Sprouty2 in the Dorsal Hippocampus Regulates Neurogenesis and Stress Responsiveness in Rats
    (Public Library of Science, 2015) Dow, Antonia L.; Lin, Tiffany V.; Chartoff, Elena; Potter, David; McPhie, Donna; Van’t Veer, Ashlee V.; Knoll, Allison T.; Lee, Kristen N.; Neve, Rachael L.; Patel, Tarun B.; Ongur, Dost; Cohen, Bruce; Carlezon, William
    Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders.
  • Thumbnail Image
    Publication
    Kappa‐opioid receptors differentially regulate low and high levels of ethanol intake in female mice
    (John Wiley and Sons Inc., 2016) Van't Veer, Ashlee; Smith, Karen L.; Cohen, Bruce; Carlezon, William; Bechtholt, Anita J.
    Abstract Introduction: Studies in laboratory animals and humans indicate that endogenous opioids play an important role in regulating the rewarding value of various drugs, including ethanol (EtOH). Indeed, opioid antagonists are currently a front‐line treatment for alcoholism in humans. Although roles for mu‐ and delta‐opioid receptors have been characterized, the contribution of kappa‐opioid receptors (KORs) is less clear. There is evidence that changes in KOR system function can decrease or increase EtOH drinking, depending on test conditions. For example, female mice lacking preprodynorphin – the precursor to the endogenous KOR ligand dynorphin – have reduced EtOH intake. Considering that KORs can regulate dopamine (DA) transmission, we hypothesized that KORs expressed on DA neurons would play a prominent role in EtOH intake in females. Methods: We used a Cre/loxP recombination strategy to ablate KORs throughout the body or specifically on dopamine uptake transporter (DAT)‐expressing neurons to investigate the role of KORs on preference for and intake of EtOH (2‐bottle choice), the transition from moderate to excessive EtOH drinking (intermittent EtOH access), and binge EtOH drinking (drinking in the dark [DID]). Results: KOR deletion decreased preference for EtOH, although this effect was less pronounced when EtOH intake increased beyond relatively low levels. Discussion Our findings indicate that KOR activation increases EtOH drinking via effects mediated, at least in part, by KORs on DA neurons. While the mechanisms of this regulation remain unknown, previous work suggests that alterations in negative reinforcement processes or sensitivity to the sensory properties of EtOH can affect preference and intake.
  • Thumbnail Image
    Publication
    Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity
    (BioMed Central, 2012) Munro, Thomas A; Berry, Loren M; Carroll, F Ivy; Zhao, Zhiyang; Carlezon, William; Cohen, Bruce; Van't Veer, Ashlee Victoria; Beguin, Cecile Andree
    Background: Nor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor. Methods To evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS). Results: In each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism. Conclusions: The negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.