Person:
MATOBA, Shogo

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

MATOBA

First Name

Shogo

Name

MATOBA, Shogo

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation
    (Elsevier BV, 2014) MATOBA, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A; Inoue, Azusa; Zhang, Yi
    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.
  • Thumbnail Image
    Publication
    Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells
    (Elsevier BV, 2015) Chung, Young Gie; MATOBA, Shogo; Liu, Yuting; Eum, Jin Hee; Lu, Falong; Jiang, Wei; Lee, Jeoung Eun; Sepilian, Vicken; Cha, Kwang Yul; Lee, Dong Ryul; Zhang, Yi
    The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.
  • Thumbnail Image
    Publication
    Naïve-like conversion enhances the difference in innate in vitro differentiation capacity between rabbit ES cells and iPS cells
    (The Society for Reproduction and Development, 2015) HONSHO, Kimiko; HIROSE, Michiko; HATORI, Masanori; YASMIN, Lubna; IZU, Haruna; MATOBA, Shogo; TOGAYACHI, Sumie; MIYOSHI, Hiroyuki; SANKAI, Tadashi; OGURA, Atsuo; HONDA, Arata
    Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called “naïve-like” state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3–7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use.
  • Thumbnail Image
    Publication
    Haploinsufficiency, but Not Defective Paternal 5mC Oxidation, Accounts for the Developmental Defects of Maternal Tet3 Knockouts
    (Elsevier BV, 2015) Inoue, Azusa; Shen, Li; MATOBA, Shogo; Zhang, Yi
    Paternal DNA demethylation in mammalian zygotes is achieved through Tet3-mediated iterative oxidation of 5-methylcytosine (5mC) coupled with replication-dependent dilution. Tet3-mediated paternal DNA demethylation is believed to play important roles in mouse development given that Tet3 heterozygous embryos derived from Tet3-deficient oocytes exhibit embryonic sublethality. Here, we demonstrate that the sublethality phenotype of the Tet3 maternal knockout mice is caused by haploinsufficiency but not defective paternal 5mC oxidation. We found that Tet3 heterozygous progenies derived from heterozygous father or mother also exhibit sublethality. Importantly, wild-type embryos reconstituted with paternal pronuclei that bypassed 5mC oxidation develop and grow to adulthood normally. Genome-scale DNA methylation analysis demonstrated that hypermethylation in maternal Tet3 knockout embryos is largely diminished by the blastocyst stage. Our study thus reveals that Tet3-mediated paternal 5mC oxidation is dispensable for mouse development and suggests the existence of a compensatory mechanism for defective 5mC oxidation in preimplantation embryos.