Person: Gazda, Hanna
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gazda
First Name
Hanna
Name
Gazda, Hanna
3 results
Search Results
Now showing 1 - 3 of 3
Publication Ribosomal Protein Mutations Induce Autophagy through S6 Kinase Inhibition of the Insulin Pathway(Public Library of Science, 2014) Heijnen, Harry F.; van Wijk, Richard; Pereboom, Tamara C.; Goos, Yvonne J.; Seinen, Cor W.; van Oirschot, Brigitte A.; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H.; van Solinge, Wouter; Kuijpers, Taco W.; Gazda, Hanna; Bierings, Marc B.; Da Costa, Lydie; MacInnes, Alyson W.Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.Publication Altered translation of GATA1 in Diamond-Blackfan anemia(2014) Ludwig, Leif S.; Gazda, Hanna; Eng, Jennifer C.; Eichhorn, Stephen W.; Thiru, Prathapan; Ghazvinian, Roxanne; George, Tracy I.; Gotlib, Jason R.; Beggs, Alan; Sieff, Colin; Lodish, Harvey F.; Lander, Eric; Sankaran, VijayRibosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA),1,2 congenital asplenia,3 and T-cell leukemia.4 Yet how mutations in such ubiquitously expressed proteins result in cell-type and tissue specific defects remains a mystery.5 Here, we show that GATA1 mutations that reduce full-length protein levels of this critical hematopoietic transcription factor can cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can similarly reduce translation of GATA1 mRNA - a phenomenon that appears to result from this mRNA having a higher threshold for initiation of translation. In primary hematopoietic cells from patients with RPS19 mutations, a transcriptional signature of GATA1 target genes is globally and specifically reduced, confirming that the activity, but not the mRNA level, of GATA1 is reduced in DBA patients with ribosomal protein mutations. The defective hematopoiesis observed in DBA patients with ribosomal protein haploinsufficiency can be at least partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations in ubiquitous ribosomal proteins can result in human disease.Publication Development of Soft Tissue Sarcomas in Ribosomal Proteins L5 and S24 Heterozygous Mice(Ivyspring International Publisher, 2016) Kazerounian, Shideh; Ciarlini, Pedro D.S.C.; Yuan, Daniel; Ghazvinian, Roxanne; Alberich-Jorda, Meritxell; Joshi, Mugdha; Zhang, Hong; Beggs, Alan; Gazda, HannaDiamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with ribosomal protein (RP) gene mutations. Recent studies have also demonstrated an increased risk of cancer predisposition among DBA patients. In this study, we report the formation of soft tissue sarcoma in the Rpl5 and Rps24 heterozygous mice. Our observation suggests that even though one wild-type allele of the Rpl5 or Rps24 gene prevents anemia in these mice, it still predisposes them to cancer development.