Person: Lane, Andrew
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lane
First Name
Andrew
Name
Lane, Andrew
6 results
Search Results
Now showing 1 - 6 of 6
Publication Mutations in G protein β subunits promote transformation and kinase inhibitor resistance(Nature Publishing Group, 2014) Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin; Rodig, Scott; Tyner, Jeffrey W; Marto, Jarrod; Weinstock, David; Lane, AndrewActivating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.Publication Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 lysine 27 trimethylation(2014) Lane, Andrew; Chapuy, Bjoern; Lin, Charles Y.; Tivey, Trevor; Li, Hubo; Townsend, Elizabeth C.; van Bodegom, Diederik; Day, Tovah; Wu, Shuo-Chieh; Liu, Huiyun; Yoda, Akinori; Alexe, Gabriela; Schinzel, Anna; Sullivan, Timothy J.; Malinge, Sébastien; Taylor, Jordan E.; Stegmaier, Kimberly; Jaffe, Jacob D.; Bustin, Michael; te Kronnie, Geertruy; Izraeli, Shai; Harris, Marian; Stevenson, Kristen E.; Neuberg, Donna; Silverman, Lewis; Sallan, Stephen; Bradner, James E; Hahn, William; Crispino, John D.; Pellman, David; Weinstock, DavidDown syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL)1 and polysomy 21 is the most frequent somatic aneuploidy amongst all B-ALLs2. Yet, the mechanistic links between chr.21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chr.21q22 confers murine progenitor B cell self-renewal in vitro, maturation defects in vivo, and B-ALL with either BCR-ABL or CRLF2 with activated JAK2. Chr.21q22 triplication suppresses H3K27me3 in progenitor B cells and B-ALLs, and “bivalent” genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Strikingly, human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Finally, overexpression of HMGN1, a nucleosome remodeling protein encoded on chr.21q223–5, suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo.Publication Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias(2016) Dunford, Andrew; Weinstock, David; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander; Beroukhim, Rameen; Lawrence, Michael; Getz, Gad; Lane, AndrewThere is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) more frequently harbored loss-of-function mutations in males (based on false discovery rate <0.1), compared to zero of 18,055 autosomal and PAR genes (P<0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence compared to males across a variety of tumor types.Publication Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax(American Association for Cancer Research (AACR), 2016) Montero, Juan; Stephansky, Jason; Cai, Tianyu; Griffin, Gabriel; Cabal-Hierro, Lucia; Togami, Katsuhiro; Hogdal, Leah J.; Galinsky, Ilene; Morgan, Elizabeth; Aster, Jon; Davids, Matthew; Leboeuf, Nicole; Stone, Richard; Konopleva, Marina; Pemmaraju, Naveen; Letai, Anthony; Lane, AndrewBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematologic malignancy with dismal outcomes for which no standard therapy exists. We found that primary BPDCN cells were dependent on the anti-apoptotic protein BCL-2 and were uniformly sensitive to the BCL-2 inhibitor venetoclax, as measured by direct cytotoxicity, apoptosis assays, and dynamic BH3 profiling. Animals bearing BPDCN patient-derived xenografts had disease responses and improved survival after venetoclax treatment in vivo. Finally, we report on two patients with relapsed/refractory BPDCN who received venetoclax off-label and experienced significant disease responses. We propose that venetoclax or other BCL-2 inhibitors undergo expedited clinical evaluation in BPDCN, alone or in combination with other therapies. In addition, these data illustrate an example of precision medicine to predict treatment response using ex vivo functional assessment of primary tumor tissue, without requiring a genetic biomarker.Publication Next-Generation cDNA Screening for Oncogene and Resistance Phenotypes(Public Library of Science, 2012) Shindoh, Nobuaki; Weigert, Oliver; Bird, Liat; Yoda, Akinori; Yoda, Yuka; Sullivan, Timothy J.; Lane, Andrew; Kopp, Nadja; Rodig, Scott; Fox, Edward Alvin; Weinstock, DavidThere is a pressing need for methods to define the functional relevance of genetic alterations identified by next-generation sequencing of cancer specimens. We developed new approaches to efficiently construct full-length cDNA libraries from small amounts of total RNA, screen for transforming and resistance phenotypes, and deconvolute by next-generation sequencing. Using this platform, we screened a panel of cDNA libraries from primary specimens and cell lines in cytokine-dependent murine Ba/F3 cells. We demonstrate that cDNA library-based screening can efficiently identify DNA and RNA alterations that confer either cytokine-independent proliferation or resistance to targeted inhibitors, including RNA alterations and intergenic fusions. Using barcoded next-generation sequencing, we simultaneously deconvoluted cytokine-independent clones recovered after transduction of 21 cDNA libraries. This approach identified multiple gain-of-function alleles, including KRAS G12D, NRAS Q61K and an activating splice variant of ERBB2. This approach has broad applicability for identifying transcripts that confer proliferation, resistance and other phenotypes in vitro and potentially in vivo.Publication Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition(The Rockefeller University Press, 2012) Weigert, Oliver; Bird, Liat; Kopp, Nadja; van Bodegom, Diederik; Marubayashi, Sachie; Christie, Amanda L.; Paranal, Ronald M.; Gaul, Christoph; Vangrevelinghe, Eric; Romanet, Vincent; Murakami, Masato; Tiedt, Ralph; Ebel, Nicolas; Evrot, Emeline; De Pover, Alain; Régnier, Catherine H.; Erdmann, Dirk; Hofmann, Francesco; Levine, Ross L.; Baffert, Fabienne; Radimerski, Thomas; Lane, Andrew; Chapuy, Bjoern; Toms, Angela Vivian; McKeown, Michael Robert; Bradner, James E; Yoda, Akinori; Eck, Michael; Sallan, Stephen; Kung, Andrew; Weinstock, DavidEnzymatic inhibitors of Janus kinase 2 (JAK2) are in clinical development for the treatment of myeloproliferative neoplasms (MPNs), B cell acute lymphoblastic leukemia (B-ALL) with rearrangements of the cytokine receptor subunit cytokine receptor–like factor 2 (CRLF2), and other tumors with constitutive JAK2 signaling. In this study, we identify G935R, Y931C, and E864K mutations within the JAK2 kinase domain that confer resistance across a panel of JAK inhibitors, whether present in cis with JAK2 V617F (observed in MPNs) or JAK2 R683G (observed in B-ALL). G935R, Y931C, and E864K do not reduce the sensitivity of JAK2-dependent cells to inhibitors of heat shock protein 90 (HSP90), which promote the degradation of both wild-type and mutant JAK2. HSP90 inhibitors were 100–1,000-fold more potent against CRLF2-rearranged B-ALL cells, which correlated with JAK2 degradation and more extensive blockade of JAK2/STAT5, MAP kinase, and AKT signaling. In addition, the HSP90 inhibitor AUY922 prolonged survival of mice xenografted with primary human CRLF2-rearranged B-ALL further than an enzymatic JAK2 inhibitor. Thus, HSP90 is a promising therapeutic target in JAK2-driven cancers, including those with genetic resistance to JAK enzymatic inhibitors.