Person: Copete, Antonio
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Copete
First Name
Antonio
Name
Copete, Antonio
2 results
Search Results
Now showing 1 - 2 of 2
Publication The High-Metallicity Explosion Environment of the Relativistic Supernova 2009bb(IOP Publishing, 2009) Levesque, E. M.; Soderberg, Alicia; Foley, R. J.; Berger, Edo; Kewley, L. J.; Chakraborti, S.; Ray, A.; Torres, M. A. P.; Challis, P.; Kirshner, R. P.; Barthelmy, S. D.; Bietenholz, M. F.; Chandra, P.; Chaplin, V.; Chevalier, R. A.; Chugai, N.; Connaughton, V.; Copete, Antonio; Fox, O.; Fransson, C.; Grindlay, Jonathan; Hamuy, M. A.; Milne, P. A.; Pignata, G.; Stritzinger, M. D.; Wieringa, M. H.We investigate the environment of the nearby (d ≈ 40 Mpc) broad-lined Type Ic supernova SN 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of ISM properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7Z⊙ and 3.5Z⊙, in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb’s unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.Publication BAT Slew Survey (BATSS): Slew Data Analysis for the Swift-BAT Coded Aperture Imaging Telescope(2013-03-18) Copete, Antonio; Grindlay, Jonathan E.; Stubbs, Christopher William; Schwartz, MatthewThe BAT Slew Survey (BATSS) is the first wide-field survey of the hard X-ray sky (15–150 keV) with a slewing coded aperture imaging telescope. Its fine time resolution, high sensitivity and large sky coverage make it particularly well-suited for detections of transient sources with variability timescales in the \(\sim 1 sec–1 hour\) range, such as Gamma-Ray Bursts (GRBs), flaring stars and Blazars. As implemented, BATSS observations are found to be consistently more sensitive than their BAT pointing-mode counterparts, by an average of 20% over the 10 sec–3 ksec exposure range, due to intrinsic systematic differences between them. The survey’s motivation, development and implementation are presented, including a description of the software and hardware infrastructure that made this effort possible. The analysis of BATSS science data concentrates on the results of the 4.8-year BATSS GRB survey, beginning with the discovery of GRB 070326 during its preliminary testing phase. A total of nineteen (19) GRBs were detected exclusively in BATSS slews over this period, making it the largest contribution to the Swift GRB catalog from all ground-based analysis. The timing and spectral properties of prompt emission from BATSS GRBs reveal their consistency with Swift long GRBs (L-GRBs), though with instances of GRBs with unusually soft spectra or X-Ray Flashes (XRFs), GRBs near the faint end of the fluence distribution accessible to Swift-BAT, and a probable short GRB with extended emission, all uncommon traits within the general Swift GRB population. In addition, the BATSS overall detection rate of 0.49 GRBs/day of instrument time is a significant increase (45%) above the BAT pointing detection rate. This result was confirmed by a GRB detection simulation model, which further showed the increased sky coverage of slews to be the dominant effect in enhancing GRB detection probabilities. A review of lessons learned is included, with specific proposals to broaden both the number and range of astrophysical sources found in future enhancements. The BATSS survey results provide solid empirical evidence in support of an all-slewing hard X-ray survey mission, a prospect that may be realized with the launch of the proposed MIRAX-HXI mission in 2017.