Person:
Pirruccello, James

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pirruccello

First Name

James

Name

Pirruccello, James

Search Results

Now showing 1 - 3 of 3
  • Publication
    Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection
    (Springer Science and Business Media LLC, 2021-06) Zekavat, Seyedeh M.; Lin, Shu-Hong; Bick, Alexander G.; Liu, Aoxing; Paruchuri, Kaavya; Wang, Chen; Uddin, Md Mesbah; Ye, Yixuan; Yu, Zhaolong; Liu, Xiaoxi; Kamatani, Yoichiro; Bhattacharya, Romit; Pirruccello, James; Pampana, Akhil; Loh, Po-Ru; Kohli, Puja; McCarroll, Steven; Kiryluk, Krzysztof; Neale, Benjamin; Ionita-Laza, Iuliana; Engels, Eric; Brown, Derek W.; Smoller, Jordan; Green, Robert; Karlson, Elizabeth; Lebo, Matthew; Ellinor, Patrick; Weiss, Scott; Daly, Mark; Terao, Chikashi; Zhao, Hongyu; Ebert, Benjamin; Reilly, Muredach; Ganna, Andrea; Machiela, Mitchell; Genovese, Giulio; Natarajan, Pradeep
    The burden of mosaic chromosomal alterations in blood-derived DNA, a type of clonal hematopoiesis, is associated with an increased risk for diverse types of infections, including sepsis and pneumonia. Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 x 10(-7)), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 x 10(-28)), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 x 10(-15)), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 x 10(-9)) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 x 10(-4)). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.
  • Thumbnail Image
    Publication
    From Noncoding Variant to Phenotype via SORT1 at the 1p13 Cholesterol Locus
    (Springer Nature, 2010) Musunuru, Kiran; Strong, Alanna; Frank-Kamenetsky, Maria; Lee, Noemi E.; Ahfeldt, Tim; Sachs, Katherine V.; Li, Xiaoyu; Li, Hui; Kuperwasser, Nicolas; Ruda, Vera M.; Pirruccello, James; Muchmore, Brian; Prokunina-Olsson, Ludmila; Hall, Jennifer L.; Schadt, Eric E.; Morales, Carlos R.; Lund-Katz, Sissel; Phillips, Michael C.; Wong, Jamie; Cantley, William; Racie, Timothy; Ejebe, Kenechi G.; Orho-Melander, Marju; Melander, Olle; Koteliansky, Victor; Fitzgerald, Kevin; Krauss, Ronald M.; Cowan, Chad; Kathiresan, Sekar; Rader, Daniel J.
    Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.
  • Thumbnail Image
    Publication
    “Road Map” to Improving Enrollment in Cardiac Rehabilitation: Identifying Barriers and Evaluating Alternatives
    (John Wiley and Sons Inc., 2017) Pirruccello, James; Traynor, Kathleen; Aragam, Krishna