Person:
Wu, Bai-Lin

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Wu

First Name

Bai-Lin

Name

Wu, Bai-Lin

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    Congenital chloride-losing diarrhea in a Mexican child with the novel homozygous SLC26A3 mutation G393W
    (Frontiers Media S.A., 2015) Reimold, Fabian Raoul; Balasubramanian, Savithri; Doroquez, David B.; Shmukler, Boris; Zsengeller, Zsuzsanna; Saslowsky, David E.; Thiagarajah, Jay; Stillman, Isaac; Lencer, Wayne; Wu, Bai-Lin; Villalpando-Carrion, Salvador; Alper, Seth
    Congenital chloride diarrhea is an autosomal recessive disease caused by mutations in the intestinal lumenal membrane Cl−/HCO−3 exchanger, SLC26A3. We report here the novel SLC26A3 mutation G393W in a Mexican child, the first such report in a patient from Central America. SLC26A3 G393W expression in Xenopus oocytes exhibits a mild hypomorphic phenotype, with normal surface expression and moderately reduced anion transport function. However, expression of HA-SLC26A3 in HEK-293 cells reveals intracellular retention and greatly decreased steady-state levels of the mutant polypeptide, in contrast to peripheral membrane expression of the wildtype protein. Whereas wildtype HA-SLC26A3 is apically localized in polarized monolayers of filter-grown MDCK cells and Caco2 cells, mutant HA-SLC26A3 G393W exhibits decreased total polypeptide abundance, with reduced or absent surface expression and sparse punctate (or absent) intracellular distribution. The WT protein is similarly localized in LLC-PK1 cells, but the mutant fails to accumulate to detectable levels. We conclude that the chloride-losing diarrhea phenotype associated with homozygous expression of SLC26A3 G393W likely reflects lack of apical surface expression in enterocytes, secondary to combined abnormalities in polypeptide trafficking and stability. Future progress in development of general or target-specific folding chaperonins and correctors may hold promise for pharmacological rescue of this and similar genetic defects in membrane protein targeting.
  • Thumbnail Image
    Publication
    Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells
    (MDPI, 2015) Brigandi, Sarah A.; Shao, Hong; Qian, Steven Y.; Shen, Yiping; Wu, Bai-Lin; Kang, Jing
    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (p < 0.001). In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2) were higher in a subset of the autistic participants (n = 20) compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism.
  • Thumbnail Image
    Publication
    Automated DNA Mutation Detection Using Universal Conditions Direct Sequencing: Application to Ten Muscular Dystrophy Genes
    (BioMed Central, 2009) Bennett, Richard R; Schneider, Hal E; Estrella, Elicia; Burgess, Stephanie; Cheng, Andrew S; Barrett, Caitlin; Lip, Va; Lai, Poh San; Shen, Yiping; Wu, Bai-Lin; Darras, Basil; Beggs, Alan; Kunkel, Louis
    Background: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results: An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. Conclusion: This automated process allows laboratories to discover DNA variations in a short time and at low cost.
  • Thumbnail Image
    Publication
    Molecular Etiology of Hearing Impairment in Inner Mongolia: Mutations in SLC26A4 Gene and Relevant Phenotype Analysis
    (BioMed Central, 2008) Dai, Pu; Yuan, Yongyi; Huang, Deliang; Zhu, Xiuhui; Yu, Fei; Kang, Dongyang; Yuan, Huijun; Han, Dongyi; Wong, Lee-Jun C; Wu, Bai-Lin
    Background: The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods: One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results: Twenty-six patients (19.26%, 26/135) were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43) of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion: In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135) of the patients with hearing loss. Together with GJB2 (23/135), SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the temporal bone CT scan to find EVA and inner ear malformation patients. This model has a unique advantage in epidemiologic study of large deaf population.
  • Thumbnail Image
    Publication
    GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment
    (BioMed Central, 2009) Dai, Pu; Yu, Fei; Liu, Xuezhong; Wang, Guojian; Yuan, Yongyi; Huang, Deliang; Kang, Dongyang; Yuan, Huijun; Yao, Kun; Hao, Jinsheng; He, Yong; Wang, Youqin; Ye, Qing; Yu, Youjun; Lin, Hongyan; Liu, Lijia; Deng, Wei; Zhu, Xiuhui; You, Yiwen; Cui, Jinghong; Hou, Nongsheng; Xu, Xuehai; Song, Rendong; Lin, Yongjun; Sun, Shuanzhu; Zhang, Ruining; Ma, Yuebing; Zhu, Shanxiang; Han, Dongyi; Wong, Lee-Jun C; Wu, Bai-Lin; Han, Bing; Li, Qi; Liu, Xin; Zhang, Xin; He, Jia; Zhang, Jin; Tang, Liang; Wu, Hao
    Background: Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups. Methods: In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results: A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion: In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.