Person:
Irwin, Jonathan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Irwin

First Name

Jonathan

Name

Irwin, Jonathan

Search Results

Now showing 1 - 10 of 15
  • Thumbnail Image
    Publication
    A rocky planet transiting a nearby low-mass star
    (Springer Nature, 2015) Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason Adam; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C.; Udry, Stéphane; Wünsche, Anaël
    M-dwarf stars – hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun – are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers1,2: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star3. The nearest such planets known to transit their star are 39 parsecs away4 , too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities5−11. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.
  • Thumbnail Image
    Publication
    The Rotation and Galactic Kinematics of Mid M Dwarfs in the Solar Neighborhood
    (American Astronomical Society, 2016) Newton, Elisabeth R; Irwin, Jonathan; Charbonneau, David; Berta-Thompson, Zachory K.; Dittmann, Jason Adam; West, Andrew A.
    Rotation is a directly observable stellar property, and it drives magnetic field generation and activity through a magnetic dynamo. Main-sequence stars with masses below approximately 0.35 ${M}_{\odot }$ (mid-to-late M dwarfs) are fully convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insight into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth Project, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the northern hemisphere, finding periods from 0.1 to 140 days. The typical rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5%–1%. We find no period–amplitude relation for stars below 0.25 ${M}_{\odot }$ and an anticorrelation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly rotating stars without Hα emission that nevertheless have strong photometric variability. We use parallaxes, proper motions, radial velocities, photometry, and near-infrared metallicity estimates to further characterize the population of rotators. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the solar neighborhood. We use the W space velocities and established age–velocity relations to estimate that stars with P < 10 days have ages of on average <2 Gyr, and that those with P > 70 days have ages of about 5 Gyr. The period distribution is dependent on mass: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods, and the gap between the fast and slow rotators is larger for lower masses. Our data are consistent with a scenario in which these stars maintain rapid rotation for several gigayears, then spin down quickly, reaching periods of around 100 days by a typical age of 5 Gyr.
  • Thumbnail Image
    Publication
    Calibration of the MEarth Photometric System: Optical Magnitudes and Photometric Metallicity Estimates for 1802 Nearby M-dwarfs
    (American Astronomical Society, 2016) Dittmann, Jason Adam; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R
    The MEarth Project is a photometric survey systematically searching the smallest stars nearest to the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be midto-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color-magnitude-metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance assuming solar neighborhood metallicity. We find that the median metallicity for a volume limited sample of stars within 20 parsecs of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29 / 565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G-dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important in assessing the significance of any putative planet-metallicity correlation.
  • Thumbnail Image
    Publication
    Zodiacal Exoplanets in Time (Zeit) Iii: A Short-Period Planet Orbiting a Pre-Main-Sequence Star in the Upper Scorpius Ob Association
    (American Astronomical Society, 2016) Mann, Andrew W.; Newton, Elisabeth R; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C.; Kidder, Benjamin; Vanderburg, Andrew
    We confirm and characterize a close-in (Porb = 5.425 days), super-Neptune sized (5.04+0.34 −0.37 R⊕) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence (11 Myr-old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (< 20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet’s properties and constrain the host star’s density. We determine K2-33’s bolometric flux and effective temperature from moderate resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 years, and the independence with wavelength rules out stellar variability, or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude it must instead be planetary in origin. The existence of K2-33b suggests close-in planets can form in situ or migrate within ∼ 10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.
  • Thumbnail Image
    Publication
    A Disintegrating Minor Planet Transiting a White Dwarf
    (Springer Nature, 2015) Vanderburg, Andrew; Johnson, John; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John; Kipping, David; Brown, Warren; Dufour, Patrick; Ciardi, David R.; Angus, Ruth; Schaefer, Laura Kay; Latham, David; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A.; Wright, Jason T.
    White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres1,2, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished3–5. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system6,7. This and the existence of warm dusty debris disks8–13 around about 4% of white dwarfs14–16 suggest that rocky debris from white dwarf progenitors’ planetary systems occasionally pollute the stars’ atmospheres17. The total accreted mass can be comparable to that of large asteroids in the solar system1. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths up to 40% and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star hosts a dusty debris disk and the star’s spectrum shows prominent lines from heavy elements like magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides evidence that heavy element pollution of white dwarfs can originate from disrupted rocky bodies such as asteroids and minor planets.
  • Thumbnail Image
    Publication
    An Activity-Rotation Relationship and Kinematic Analysis of Nearby Mid-to-Late-Type M Dwarfs
    (IOP Publishing, 2015) West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason Adam; Pineda, J. Sebastian
    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of latetype M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1-M4) and 86 days (late-type; M5-M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.
  • Thumbnail Image
    Publication
    An Empirical Calibration to Estimate Cool Dwarf Fundamental Parameters From H-Band Spectra
    (IOP Publishing, 2015) Newton, Elisabeth R; Charbonneau, David; Irwin, Jonathan; Mann, Andrew W.
    Interferometric radius measurements provide a direct probe of the fundamental parameters of M dwarfs. However, interferometry is within reach for only a limited sample of nearby, bright stars. We use interferometrically measured radii, bolometric luminosities, and effective temperatures to develop new empirical calibrations based on low-resolution, near-infrared spectra. We find that H-band Mg and Al spectral features are good tracers of stellar properties, and derive functions that relate effective temperature, radius, and log luminosity to these features. The standard deviations in the residuals of our best fits are, respectively, 73 K, 0.027 R ☉, and 0.049 dex (an 11% error on luminosity). Our calibrations are valid from mid K to mid M dwarf stars, roughly corresponding to temperatures between 3100 and 4800 K. We apply our H-band relationships to M dwarfs targeted by the MEarth transiting planet survey and to the cool Kepler Objects of Interest (KOIs). We present spectral measurements and estimated stellar parameters for these stars. Parallaxes are also available for many of the MEarth targets, allowing us to independently validate our calibrations by demonstrating a clear relationship between our inferred parameters and the stars' absolute K magnitudes. We identify objects with magnitudes that are too bright for their inferred luminosities as candidate multiple systems. We also use our estimated luminosities to address the applicability of near-infrared metallicity calibrations to mid and late M dwarfs. The temperatures we infer for the KOIs agree remarkably well with those from the literature; however, our stellar radii are systematically larger than those presented in previous works that derive radii from model isochrones. This results in a mean planet radius that is 15% larger than one would infer using the stellar properties from recent catalogs. Our results confirm the derived parameters from previous in-depth studies of KOIs 961 (Kepler-42), 254 (Kepler-45), and 571 (Kepler-186), the latter of which hosts a rocky planet orbiting in its star's habitable zone.
  • Thumbnail Image
    Publication
    Trigonometric Parallaxes for 1,507 Nearby Mid-to-late M-dwarfs
    (IOP Publishing, 2014) Dittmann, Jason Adam; Irwin, Jonathan; Charbonneau, David; Berta-Thompson, Zachory K.
    The MEarth survey is a search for small rocky planets around the smallest, nearest stars to the Sun as identified by high proper motion with red colors. We augmented our planetary search time series with lower cadence astrometric imaging and obtained two million images of approximately 1800 stars suspected to be mid-to-late M dwarfs. We fit an astrometric model to MEarth’s images for 1507 stars and obtained trigonometric distance measurements to each star with an average precision of 5 mas. Our measurements, combined with the Two Micron All Sky Survey photometry, allowed us to obtain an absolute Ks magnitude for each star. In turn, this allows us to better estimate the stellar parameters than those obtained with photometric estimates alone and to better prioritize the targets chosen to monitor at high cadence for planetary transits. The MEarth sample is mostly complete out to a distance of 25 pc for stars of type M5.5V and earlier, and mostly complete for later type stars out to 20 pc. We find eight stars that are within 10 pc of the Sun for which there did not exist a published trigonometric parallax distance estimate. We release with this work a catalog of the trigonometric parallax measurements for 1507 mid-to-late M dwarfs, as well as new estimates of their masses and radii.
  • Thumbnail Image
    Publication
    Near-Infrared Metallicities, Radial Velocities and Spectral Types for 447 Nearby M Dwarfs
    (IOP Publishing, 2013) Newton, Elisabeth R; Charbonneau, David; Irwin, Jonathan; Berta-Thompson, Zachory K.; Rojas-Ayala, Barbara; Covey, Kevin; Lloyd, James P.
    We present metallicities, radial velocities, and near-infrared (NIR) spectral types for 447 M dwarfs determined from moderate resolution (R ≈ 2000) NIR spectra obtained with the NASA Infrared Telescope Facility (IRTF)/SpeX. These M dwarfs are primarily targets of the MEarth Survey, a transiting planet survey searching for super Earths around mid-to-late M dwarfs within 33 pc. We present NIR spectral types for each star and new spectral templates for the IRTF in the Y, J, H, and K-bands, created using M dwarfs with near-solar metallicities. We developed two spectroscopic distance calibrations that use NIR spectral type or an index based on the curvature of the K-band continuum. Our distance calibration has a scatter of 14%. We searched 27 NIR spectral lines and 10 spectral indices for metallicity sensitive features, taking into account correlated noise in our estimates of the errors on these parameters. We calibrated our relation using 36 M dwarfs in common proper pairs with an F-, G-, or K-type star of known metallicity. We validated the physical association of these pairs using proper motions, radial velocities, and spectroscopic distance estimates. Our resulting metallicity calibration uses the sodium doublet at 2.2 μm as the sole indicator for metallicity. It has an accuracy of 0.12 dex inferred from the scatter between the metallicities of the primaries and the estimated metallicities of the secondaries. Our relation is valid for NIR spectral types from M1V to M5V and for –1.0 dex < [Fe/H] < +0.35 dex. We present a new color-color metallicity relation using J – H and J – K colors that directly relates two observables: the distance from the M dwarf main sequence and equivalent width of the sodium line at 2.2 μm. We used radial velocities of M dwarf binaries, observations at different epochs, and comparison between our measurements and precisely measured radial velocities to demonstrate a 4 km s–1 accuracy.
  • Thumbnail Image
    Publication
    The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs
    (American Astronomical Society, 2016) Newton, Elisabeth R; Irwin, Jonathan; Charbonneau, David; Berta-Thompson, Zachory K.; Dittmann, Jason Adam
    Stellar activity and rotation frustrate the detection of exoplanets through the radial velocity technique. This effect is particularly of concern for M dwarfs, which can remain magnetically active for billions of years. We compile rotation periods for late-type stars and for the M dwarf planet-host sample in order to investigate the rotation periods of older field stars across the main sequence. We show that for stars with masses between 0.25 and 0.5 solar masses (M4V to M1V), the stellar rotation period typical of field stars coincides with the orbital periods of planets in the habitable zone. This will pose a fundamental challenge to the discovery and characterization of potentially habitable planets around early M dwarfs. Due to the longer rotation periods reached by mid M dwarfs and the shorter orbital period at which the planetary habitable zone is found, stars with masses between 0.1 and 0.25 solar masses (M6V to M4V) offer better opportunities for the detection of habitable planets via radial velocities.