Person:
Hsu, Chih-Hung

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hsu

First Name

Chih-Hung

Name

Hsu, Chih-Hung

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Musashi-1 Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through Translational Inhibition of Tensin3
    (Nature Publishing Group UK, 2017) Chen, Hsiao-Yun; Lin, Liang-Ting; Wang, Mong-Lien; Laurent, Benoit; Hsu, Chih-Hung; Pan, Chih-Ming; Jiang, Wan-Ru; Chen, Pau-Yuan; Ma, Hsin-I; Chen, Yi-Wei; Huang, Pin-I; Chiou, Arthur; Chiou, Shih-Hwa
    The RNA-binding protein Musashi-1 (MSI1) exerts essential roles in multiple cellular functions, such as maintenance of self-renewal and pluripotency of stem cells. MSI1 overexpression has been observed in several tumor tissues, including glioblastoma (GBM), and is considered as a well-established marker for tumor metastasis and recurrence. However, the molecular mechanisms by which MSI1 regulates cell migration are still undetermined. Here we reported that MSI1 alters cell morphology, promotes cell migration, and increases viscoelasticity of GBM cells. We also found that MSI1 directly binds to the 3′UTR of Tensin 3 (TNS3) mRNA, a negative regulator of cell migration, to inhibit its translation. Additionally, we identified that RhoA-GTP could be a potential regulator in MSI1/TNS3-mediated cell migration and morphological changes. In a xenograft animal model, high expression ratio of MSI1 to TNS3 enhanced GBM tumor migration. We also confirmed that MSI1 and TNS3 expressions are mutually exclusive in migratory tumor lesions, and GBM patients with MSI1high/TNS3low pattern tend to have poor clinical outcome. Taken together, our findings suggested a critical role of MSI1-TNS3 axis in regulating GBM migration and highlighted that the ratio of MSI1/TNS3 could predict metastatic and survival outcome of GBM patients.
  • Thumbnail Image
    Publication
    m6A RNA methylation regulates the UV-induced DNA damage response
    (2017) Xiang, Yang; Laurent, Benoit; Hsu, Chih-Hung; Nachtergaele, Sigrid; Lu, Zhike; Sheng, Wanqiang; Xu, Chuanyun; Chen, Hao; Ouyang, Jian; Wang, Siqing; Ling, Dominic; Hsu, Pang-Hung; Zou, Lee; Jambhekar, Ashwini; He, Chuan; Shi, Yang
    Cell proliferation and survival require the faithful maintenance and propagation of genetic information, which are threatened by the ubiquitous sources of DNA damage present intracellularly and in the external environment. A system of DNA repair, called the DNA damage response (DDR), detects and repairs damaged DNA and prevents cell division until the repair is complete. Here we report that methylation at the 6 position of adenosine (m6A) in RNA is rapidly (within 2 minutes) and transiently induced at DNA damage sites in response to UV. This modification occurs on numerous poly(A)+ transcripts and is regulated by the methyltransferase METTL31 and the demethylase FTO2. In the absence of METTL3 catalytic activity, cells showed delayed repair of UV-induced cyclobutane pyrimidine (CPD) adducts and elevated sensitivity to UV, demonstrating the importance of m6A in the UV-responsive DDR. Multiple DNA polymerases are involved in the UV response, some of which resynthesize DNA after the lesion has been excised by the nucleotide excision repair (NER) pathway3, while others participate in trans-lesion synthesis (TLS) to allow replication past damaged lesions in S phase4. DNA polymerase κ (Pol κ), which has been implicated in both NER and TLS5,6, required the catalytic activity of METTL3 for immediate localization to UV-induced DNA damage sites. Importantly, Pol κ over-expression qualitatively suppressed the CPD removal defect associated with METTL3 loss. Taken together, we have uncovered a novel function for RNA m6A modification in the UV-induced DDR, and our findings collectively support a model whereby m6A RNA serves as a beacon for the selective, rapid recruitment of Pol κ to damage sites to facilitate repair and cell survival.