Person: Corfas, Gabriel
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Corfas
First Name
Gabriel
Name
Corfas, Gabriel
5 results
Search Results
Now showing 1 - 5 of 5
Publication The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development(Nature Pub. Group, 2015) Giera, Stefanie; Deng, Yiyu; Luo, Rong; Ackerman, Sarah D.; Mogha, Amit; Monk, Kelly R.; Ying, Yanqin; Jeong, Sung-Jin; Makinodan, Manabu; Rosen, Allison; Chang, Bernard; Stevens, Beth; Corfas, Gabriel; Piao, XianhuaMutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development.Publication Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma(eLife Sciences Publications, Ltd, 2014) Wan, Guoqiang; Gómez-Casati, Maria E; Gigliello, Angelica R; Liberman, M Charles; Corfas, GabrielNeurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreERT line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury. DOI: http://dx.doi.org/10.7554/eLife.03564.001Publication Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia(Molecular Diversity Preservation International (MDPI), 2011) Berde, Charles; Athiraman, Umeshkumar; Yahalom, Barak; Zurakowski, David; Corfas, Gabriel; Bognet, ChristinaCurrently available local anesthetics have analgesic durations in humans generally less than 12 hours. Prolonged-duration local anesthetics will be useful for postoperative analgesia. Previous studies showed that in rats, combinations of tetrodotoxin (TTX) with bupivacaine had supra-additive effects on sciatic block durations. In those studies, epinephrine combined with TTX prolonged blocks more than 10-fold, while reducing systemic toxicity. TTX, formulated as Tectin, is in phase III clinical trials as an injectable systemic analgesic for chronic cancer pain. Here, we examine dose-duration relationships and sciatic nerve histology following local nerve blocks with combinations of Tectin with bupivacaine 0.25% (2.5 mg/mL) solutions, with or without epinephrine 5 µg/mL (1:200,000) in rats. Percutaneous sciatic blockade was performed in Sprague-Dawley rats, and intensity and duration of sensory blockade was tested blindly with different Tectin-bupivacaine-epinephrine combinations. Between-group comparisons were analyzed using ANOVA and post-hoc Sidak tests. Nerves were examined blindly for signs of injury. Blocks containing bupivacaine 0.25% with Tectin 10 µM and epinephrine 5 µg/mL were prolonged by roughly 3-fold compared to blocks with bupivacaine 0.25% plain (P < 0.001) or bupivacaine 0.25% with epinephrine 5 µg/mL (P < 0.001). Nerve histology was benign for all groups. Combinations of Tectin in bupivacaine 0.25% with epinephrine 5 µg/mL appear promising for prolonged duration of local anesthesia.Publication Astrocyte-Specific Disruption of SynCAM1 Signaling Results in ADHD-Like Behavioral Manifestations(Public Library of Science, 2012) Sandau, Ursula S.; Alderman, Zefora; Corfas, Gabriel; Ojeda, Sergio R.; Raber, JacobSynCAM1 is an adhesion molecule involved in synaptic differentiation and organization. SynCAM1 is also expressed in astroglial cells where it mediates astrocyte-to astrocyte and glial-neuronal adhesive communication. In astrocytes, SynCAM1 is functionally linked to erbB4 receptors, which are involved in the control of both neuronal/glial development and mature neuronal and glial function. Here we report that mice carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes (termed GFAP-DNSynCAM1 mice) exhibit disrupted diurnal locomotor activity with enhanced and more frequent episodes of activity than control littermates during the day (when the animals are normally sleeping) accompanied by shorter periods of rest. GFAP-DNSynCAM1 mice also display high levels of basal activity in the dark period (the rodent's awake/active time) that are attenuated by the psychostimulant D,L-amphetamine, and reduced anxiety levels in response to both avoidable and unavoidable provoking stimuli. These results indicate that disruption of SynCAM1-dependent astroglial function results in behavioral abnormalities similar to those described in animals model of attention-deficit hyperactive disorder (ADHD), and suggest a hitherto unappreciated contribution of glial cells to the pathophysiology of this disorder.Publication Identification of Novel Glial Genes by Single-Cell Transcriptional Profiling of Bergmann Glial Cells from Mouse Cerebellum(Public Library of Science, 2010) Koirala, Samir; Corfas, GabrielBergmann glial cells play critical roles in the structure and function of the cerebellum. During development, their radial processes serve as guides for migrating granule neurons and their terminal endfeet tile to form the glia limitans. As the cerebellum matures, Bergmann glia perform important roles in synaptic transmission and synapse maintenance, while continuing to serve as essential structural elements. Despite growing evidence of the diverse functions of Bergmann glia, the molecular mechanisms that mediate these functions have remained largely unknown. As a step toward identifying the molecular repertoire underlying Bergmann glial function, here we examine global gene expression in individual Bergmann glia from developing (P6) and mature (P30) mouse cerebellum. When we select for developmentally regulated genes, we find that transcription factors and ribosomal genes are particularly enriched at P6 relative to P30; whereas synapse associated molecules are enriched at P30 relative to P6. We also analyze genes expressed at high levels at both ages. In all these categories, we find genes that were not previously known to be expressed in glial cells, and discuss novel functions some of these genes may potentially play in Bergmann glia. We also show that Bergmann glia, even in the adult, express a large set of genes thought to be specific to stem cells, suggesting that Bergmann glia may retain neural precursor potential as has been proposed. Finally, we highlight several genes that in the cerebellum are expressed in Bergmann glia but not astrocytes, and may therefore serve as new, specific markers for Bergmann glia.