Publication:
Multispectral Chiral Imaging with a Metalens

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Khorasaninejad, M., W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso. 2016. “Multispectral Chiral Imaging with a Metalens.” Nano Letters 16 (7): 4595–4600. https://doi.org/10.1021/acs.nanolett.6b01897.

Research Data

Abstract

The vast majority of biologically active compounds, ranging from amino acids to essential nutrients such as glucose, possess intrinsic handedness. This in turn gives rise to chiral optical properties that provide a basis for detecting and quantifying enantio-specific concentrations of these molecules. However, traditional chiroptical spectroscopy and imaging techniques require cascading of multiple optical components in sophisticated setups. Here, we present a planar lens with an engineered dispersive response, which simultaneously forms two images with opposite helicity of an object within the same field-of-view. In this way, chiroptical properties can be probed across the visible spectrum using only the lens and a camera without the addition of polarizers or dispersive optical devices. We map the circular dichroism of the exoskeleton of a chiral beetle, Chrysina gloriosa, which is known to exhibit high reflectivity of left-circularly polarized light, with high spatial resolution limited by the numerical aperture of the planar lens. Our results demonstrate the potential of metasurfaces in realizing a compact and multifunctional device with unprecedented imaging capabilities.

Description

Other Available Sources

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories