Publication:
Quantum-Coherence-Enhanced Surface Plasmon Amplification by Stimulated Emission of Radiation

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dorfman, Konstantin E., Pankaj K. Jha, Dmitri V. Voronine, Patrice Genevet, Federico Capasso, and Marlan O. Scully. 2013. “Quantum-Coherence-Enhanced Surface Plasmon Amplification by Stimulated Emission of Radiation.” Physical Review Letters 111 (4). https://doi.org/10.1103/physrevlett.111.043601.

Research Data

Abstract

We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics and holds promise for quantum control of nanoplasmonic devices.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories