Publication:
Learning Shallow Quantum Circuits

No Thumbnail Available

Date

2024-06-11

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Research Data

Abstract

Despite fundamental interests in learning quantum circuits, the existence of a computationally efficient algorithm for learning shallow quantum circuits remains an open question. Because shallow quantum circuits can generate distributions that are classically hard to sample from, existing learning algorithms do not apply. In this work, we present a polynomial-time classical algorithm for learning the description of any unknown n-qubit shallow quantum circuit U (with arbitrary unknown architecture) within a small diamond distance using single-qubit measurement data on the output states of U. We also provide a polynomial-time classical algorithm for learning the description of any unknown n-qubit state | ψ ⟩ = U | 0n ⟩ prepared by a shallow quantum circuit U (on a 2D lattice) within a small trace distance using single-qubit measurements on copies of | ψ ⟩. Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions. This circuit representation yields an optimization landscape that can be efficiently navigated and enables efficient learning of quantum circuits that are classically hard to simulate.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories