Publication:
Protein structure and evolutionary history determine sequence space topology

No Thumbnail Available

Date

2005

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Cold Spring Harbor Laboratory Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Shakhnovich, B. E. 2005. “Protein Structure and Evolutionary History Determine Sequence Space Topology.” Genome Research15 (3): 385–92. https://doi.org/10.1101/gr.3133605.

Research Data

Abstract

Understanding the observed variability in the number of homologs of a gene is a very important Unsolved problem that has broad implications for research into coevolution of structure and function, gene duplication, pseudogene formation, and possibly for emerging diseases. Here, we attempt to define and elucidate some possible causes behind the observed irregularity in sequence space. We present evidence that sequence variability and functional diversity of a gene or fold family is influenced by quantifiable characteristics of the protein structure. These characteristics reflect the structural potential for sequence plasticity, i.e., the ability to accept mutation without losing thermodynamic stability. We identify a structural feature of a protein domain-contact density-that serves as a determinant of entropy ill sequence space, i.e., the ability of a protein to accept mutations without destroying the fold (also known as fold designability). We show that (log) of average gene family size exhibits statistical correlation (R-2 > 0.9.) with contact density of its three-dimensional structure. We present evidence that the size of individual gene families are influenced not only by the designability Of the structure, but also by evolutionary history, e.g., the amount of time the gene family was in existence We further show that our observed statistical correlation between gene family size and contact density of the structure is valid oil many levels of evolutionary divergence, i.e., [lot only for closely related sequence, but also for less-related fold and superfamily levels of homology.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories