Publication:
Amide Proton Transfer Imaging With Improved Robustness to Magnetic Field Inhomogeneity and Magnetization Transfer Asymmetry Using Saturation With Frequency Alternating RF Irradiation

No Thumbnail Available

Date

2011-11

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Scheidegger, Rachel, Elena Vinogradov, David Alsop. "Amide Proton Transfer Imaging With Improved Robustness to Magnetic Field Inhomogeneity and Magnetization Transfer Asymmetry Using Saturation With Frequency Alternating RF Irradiation." Magnetic Resonance in Medicine 66, no. 5 (2011): 1275-1285. DOI: 10.1002/mrm.22912

Research Data

Abstract

Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time.

Description

Keywords

Research Subject Categories::MEDICINE::Physiology and pharmacology::Radiological research::Radiology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories