Publication:
Fourier decomposition of payoff matrix for symmetric three-strategy games

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Szabó, György, Kinga S. Bodó, Benjamin Allen, and Martin A. Nowak. 2014. “Fourier Decomposition of Payoff Matrix for Symmetric Three-Strategy Games.” Physical Review E 90 (4). https://doi.org/10.1103/physreve.90.042811.

Research Data

Abstract

In spatial evolutionary games the payoff matrices are used to describe pair interactions among neighboring players located on a lattice. Now we introduce a way how the payoff matrices can be built up as a sum of payoff components reflecting basic symmetries. For the two-strategy games this decomposition reproduces interactions characteristic to the Ising model. For the three-strategy symmetric games the Fourier components can be classified into four types representing games with self-dependent and cross-dependent payoffs, variants of three-strategy coordinations, and the rock-scissors-paper (RSP) game. In the absence of the RSP component the game is a potential game. The resultant potential matrix has been evaluated. The general features of these systems are analyzed when the game is expressed by the linear combinations of these components.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories