Publication: Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding
No Thumbnail Available
Open/View Files
Date
2006
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Society for Industrial and Applied Mathematics
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Ben‐Sasson, Eli, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. 2006. “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding.” SIAM Journal on Computing 36 (4): 889–974. https://doi.org/10.1137/s0097539705446810.
Research Data
Abstract
We continue the study of the trade-off between the length of probabilistically checkable proofs (PCPs) and their query complexity, establishing the following main results ( which refer to proofs of satisfiability of circuits of size n):1. We present PCPs of length exp(o( log log n)(2)) . n that can be verified by making o( log log n) Boolean queries.2. For every epsilon > 0, we present PCPs of length exp(log(epsilon) n) . n that can be verified by making a constant number of Boolean queries. In both cases, false assertions are rejected with constant probability ( which may be set to be arbitrarily close to 1). The multiplicative overhead on the length of the proof, introduced by transforming a proof into a probabilistically checkable one, is just quasi polylogarithmic in the first case ( of query complexity o( log log n)), and is 2( log n) e, for any e > 0, in the second case ( of constant query complexity). Our techniques include the introduction of a new variant of PCPs that we call "robust PCPs of proximity." These new PCPs facilitate proof composition, which is a central ingredient in the construction of PCP systems. ( A related notion and its composition properties were discovered independently by Dinur and Reingold.) Our main technical contribution is a construction of a "length-efficient" robust PCP of proximity. While the new construction uses many of the standard techniques used in PCP constructions, it does differ from previous constructions in fundamental ways, and in particular does not use the "parallelization" step of Arora et al. [J. ACM, 45 ( 1998), pp. 501 - 555]. The alternative approach may be of independent interest. We also obtain analogous quantitative results for locally testable codes. In addition, we introduce a relaxed notion of locally decodable codes and present such codes mapping k information bits to codewords of length k(1+epsilon) for any epsilon > 0.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service