Publication: Cutaneous Papillomavirus E6 Inhibit NOTCH and TGF-Beta Signaling to Disrupt Keratinocyte Differentiation.
No Thumbnail Available
Date
2017-01-19
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Research Data
Abstract
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia Verruciformis or after immunosuppression following organ transplantation. We along with others have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-beta signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Description
Other Available Sources
Keywords
Biology, Virology, Biology, Molecular
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service