Publication:
Pairwise diversity and tMRCA as potential markers for HIV infection recency

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Moyo, Sikhulile, Eduan Wilkinson, Alain Vandormael, Rui Wang, Jia Weng, Kenanao P. Kotokwe, Simani Gaseitsiwe, et al. 2017. “Pairwise Diversity and tMRCA as Potential Markers for HIV Infection Recency.” Medicine 96 (6): e6041. https://doi.org/10.1097/md.0000000000006041.

Research Data

Abstract

Intrahost human immunodeficiency virus (HIV)-1 diversity increases linearly over time. We assessed the extent to which mean pairwise distances and the time to the most recent common ancestor (tMRCA) inferred from intrahost HIV-1C env sequences were associated with the estimated time of HIV infection. Data from a primary HIV-1C infection study in Botswana were used for this analysis (N=42). A total of 2540 HIV-1C env gp120 variable loop region 1 to conserved region 5 (V1C5) of the HIV-1 envelope gp120 viral sequences were generated by single genome amplification and sequencing, with an average of 61 viral sequences per participant and 11 sequences per time point per participant. Raw pairwise distances were calculated for each time point and participant using the ape package in R software. The tMRCA was estimated using phylogenetic inference implemented in Bayesian Evolutionary Analysis by Sampling Trees v1.8.2. Pairwise distances and tMRCA were significantly associated with the estimated time since HIV infection (both P<0.001). Taking into account multiplicity of HIV infection strengthened these associations. HIV-1C env-based pairwise distances and tMRCA can be used as potential markers for HIV recency. However, the tMRCA estimates demonstrated no advantage over the pairwise distances estimates.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories