Publication:
Quantum Communication Using Coherent Rejection Sampling

No Thumbnail Available

Date

2017-09-21

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Anshu, Anurag, Vamsi Krishna Devabathini, Rahul Jain. "Quantum Communication Using Coherent Rejection Sampling." Phys. Rev. Lett. 119, no. 12 (2017). DOI: 10.1103/physrevlett.119.120506

Research Data

Abstract

We present a new scheme for the compression of one-way quantum messages, in the setting of coherent entanglement assisted quantum communication. For this, we present a new technical tool that we call the convex split lemma, which is inspired by the classical compression schemes that use rejection sampling procedure. As a consequence, we show new bounds on the quantum communication cost of single-shot entanglement-assisted one-way quantum state redistribution task and for the sub-tasks quantum state splitting and quantum state merging. Our upper and lower bounds are tight up to a constant and hence stronger than previously known best bounds for above tasks. Our protocols use explicit quantum operations on the sides of Alice and Bob, which are different from the decoupling by random unitaries approach used in previous works. As another application, we present a port-based teleportation scheme which works when the set of input states is restricted to a known ensemble, hence potentially saving the number of required ports. Furthermore, in case of no prior knowledge about the set of input states, our average success fidelity matches the known average success fidelity, providing a new port-based teleportation scheme with similar performance as appears in literature.

Description

Other Available Sources

Keywords

General Physics and Astronomy

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories