Publication:
Evolutionary dynamics of tumor suppressor gene inactivation

No Thumbnail Available

Date

2004

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Nowak, M. A., F. Michor, N. L. Komarova, and Y. Iwasa. 2004. “Evolutionary Dynamics of Tumor Suppressor Gene Inactivation.” Proceedings of the National Academy of Sciences 101 (29): 10635–38. https://doi.org/10.1073/pnas.0400747101.

Research Data

Abstract

Tumor suppressor genes (TSGs) are important gatekeepers that protect against somatic evolution of cancer. Losing both alleles of a TSG in a single cell represents a step toward cancer. We study how the kinetics of TSG inactivation depends on the population size of cells and the mutation rates for the first and second hit. We calculate the probability as function of time that at least one cell has been generated with two inactivated alleles of a TSG. We find three different kinetic laws: in small, intermediate, and large populations, it takes, respectively, two, one, and zero rate-limiting steps to inactivate a TSG. We also study the effect of chromosomal and other genetic instabilities. Small lesions without genetic instability can take a very long time to inactivate the next TSG, whereas the same lesions with genetic instability pose a much greater risk for cancer progression.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories