Publication:
Organ Size Control via Hydraulically Gated Oscillations

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Company of Biologists
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ruiz-Herrero, Teresa, Kévin Alessandri, Basile V. Gurchenkov, Pierre Nassoy, and L. Mahadevan. 2017. Organ Size Control via Hydraulically Gated Oscillations. Development 144: 4422-4427.

Research Data

Abstract

Hollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells.

Description

Other Available Sources

Keywords

hydraulic gating, organ size control, synthetic cysts, morphogenesis

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories