Publication:
Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease

No Thumbnail Available

Date

2021-07-14

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

McAlpine, Cameron S, Joseph Park, Ana Griciuc, Eunhee Kim, Se Hoon Choi, Yoshiko Iwamoto, Máté G Kiss, et al. 2021. “Astrocytic Interleukin-3 Programs Microglia and Limits Alzheimer's Disease.” Nature (London) 595 (7869): 701–6.

Research Data

Abstract

Communication within the glial cell ecosystem is essential to neuronal and brain health1–3. The influence of glial cells on β-amyloid (Aβ) and neurofibrillary tau accumulation and clearance in Alzheimer’s disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) reprograms microglia to ameliorate AD pathology. Upon recognition of Aβ deposits, microglia augment IL-3Rɑ, IL-3’s specific receptor, rendering them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional reprograming of microglia endowing them with an acute immune response program, enhanced motility, and the capacity to cluster and clear Aβ and tau aggregates. These changes restrict AD pathology and cognitive decline. This study identifies IL-3 as a critical mediator of astrocyte-microglia crosstalk and a node for therapeutic intervention in AD.

Description

Other Available Sources

Keywords

Multidisciplinary

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories