Publication: Genetic Analyses of DNA-Binding Mutants in the Catalytic Core Domain of Human Immunodeficiency Virus Type 1 Integrase
No Thumbnail Available
Open/View Files
Date
2005
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Microbiology
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Lu, R., A. Limon, H. Z. Ghory, and A. Engelman. 2005. “Genetic Analyses of DNA-Binding Mutants in the Catalytic Core Domain of Human Immunodeficiency Virus Type 1 Integrase.” Journal of Virology 79 (4): 2493–2505. https://doi.org/10.1128/jvi.79.4.2493-2505.2005.
Research Data
Abstract
The catalytic core domain (CCD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) harbors the enzyme active site and binds viral and chromosomal DNA during integration. Thirty-five CCD mutant viruses were constructed, paying particular attention to conserved residues in the Phe(139)-Gln(146) flexible loop and abutting Ser(147)-Val(165) amphipathic alpha helix that were implicated from previous in vitro work as important for DNA binding. Defective viruses were typed as class I mutants (specifically blocked at integration) or pleiotropic class 11 mutants (additional particle assembly and/or reverse transcription defects). Whereas HIV-1(P145A) and HIV-1(Q146K) grew like the wild type, HIV-1(N144K) and HIV-1(Q148L) were class I mutants, reinforcing previous results that Gln-148 is important for DNA binding and uncovering for the first time an important role for Asn-144 in integration. HIV-1(Q62K), HIV-1(H67E), HIV-1(N120K), and HIV-1(N155K) were also class I mutants, supporting findings that Gln-62 and Asn-120 interact with viral and target DNA, respectively, and suggesting similar integration-specific roles for His-67 and Asn-155. Although results from complementation analyses established that IN functions as a multimer, the interplay between active-site and CCD DNA binding functions was unknown. By using Vpr-IN complementation, we determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA. We additionally characterized E138K as an intramolecular suppressor of Gln-62 mutant virus and IN. The results of these analyses highlight conserved CCD residues that are important for HIV-1 replication and integration and define the relationship between DNA binding and catalysis that occurs during integration in vivo.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service