Publication:
Dynamics of Astrophysical Bubbles and Bubble-driven Shocks: Basic Theory, Analytical Solutions, and Observational Signatures

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Medvedev, Mikhail V., and Abraham Loeb. 2013. “DYNAMICS OF ASTROPHYSICAL BUBBLES AND BUBBLE-DRIVEN SHOCKS: BASIC THEORY, ANALYTICAL SOLUTIONS, AND OBSERVATIONAL SIGNATURES.” The Astrophysical Journal 768 (2): 113. https://doi.org/10.1088/0004-637x/768/2/113.

Research Data

Abstract

Bubbles in the interstellar medium are produced by astrophysical sources, which continuously or explosively deposit large amounts of energy into the ambient medium. These expanding bubbles can drive shocks in front of them, the dynamics of which is markedly different from the widely used Sedov-von Neumann-Taylor blast wave solution. Here, we present the theory of a bubble-driven shock and show how its properties and evolution are determined by the temporal history of the source energy output, generally referred to as the source luminosity law, L(t). In particular, we find the analytical solutions for a driven shock in two cases: the self-similar scaling law, L proportional to(t/t(s))(p) (with p and t(s) being constants) and the finite activity time case, L proportional to (1-t/t(s))(-p). The latter with p > 0 describes a finite-time-singular behavior, which is relevant to a wide variety of systems with explosive-type energy release. For both luminosity laws, we derived the conditions needed for the driven shock to exist and predict the shock observational signatures. Our results can be relevant to stellar systems with strong winds, merging neutron star/magnetar/black hole systems, and massive stars evolving to supernovae explosions.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories