Publication: Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury
No Thumbnail Available
Open/View Files
Date
2004
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Hamar, P., E. Song, G. Kokeny, A. Chen, N. Ouyang, and J. Lieberman. 2004. “Small Interfering RNA Targeting Fas Protects Mice against Renal Ischemia-Reperfusion Injury.” Proceedings of the National Academy of Sciences 101 (41): 14883–88. https://doi.org/10.1073/pnas.0406421101.
Research Data
Abstract
Fas-mediated apoptosis has been suggested to contribute to tubular cell death after renal ischemia-reperfusion injury. Here we investigate whether small interfering RNA (siRNA) duplexes targeting Fas protect mice from acute renal failure after clamping of the renal artery. Renal ischemia-reperfusion injury was induced by clamping the renal vein and artery for 15 or 35 min. Mice were treated before or after ischemia with siRNA targeting Fas or a control gene, administered by hydrodynamic injection, low-volume renal vein injection, or both. Treated mice were evaluated for renal Fas protein and mRNA expression, tissue histopathology, and apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining. Blood urea nitrogen and survival were monitored in mice in which the contralateral kidney had been removed. A single hydrodynamic injection of Fas siRNA reduced Fas mRNA and protein expression in the kidney 4-fold. Kidneys from mice that received Fas siRNA two days earlier had substantially less renal tubular apoptosis by TUNEL staining and less tubular atrophy and hyaline damage. Whereas 90% of mice pretreated with saline or GFP siRNA died, only 20% of Fas-siRNA-pretreated animals died. The same survival advantage was provided by a single low-volume Fas siRNA injection into the renal vein. Moreover, postischemic injection through the renal vein protected 38% of mice from death. This study confirms the importance of Fas-mediated apoptosis in renal ischemia-reperfusion injury. Silencing Fas by systemic or local catheterization holds therapeutic promise to limit ischemia-reperfusion injury.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service