Publication:
Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kocsis, Bence, Zoltán Haiman, and Abraham Loeb. 2012. “Gas Pile-Up, Gap Overflow and Type 1.5 Migration in Circumbinary Discs: Application to Supermassive Black Hole Binaries.” Monthly Notices of the Royal Astronomical Society 427 (3): 2680–2700. https://doi.org/10.1111/j.1365-2966.2012.22118.x.

Research Data

Abstract

We study the interaction of a supermassive black hole (SMBH) binary and a standard radiatively efficient thin accretion disc. We examine steady-state configurations of the disc and migrating SMBH system, self-consistently accounting for tidal and viscous torques and heating, radiative diffusion limited cooling, gas and radiation pressure, and the decay of the binary's orbit. We obtain a phase diagram of the system as a function of binary parameters, showing regimes in which both the disc structure and migration have a different character. Although massive binaries can create a central gap in the disc at large radii, the tidal barrier of the secondary causes a significant pile-up of gas outside of its orbit, which can lead to the closing of the gap. We find that this spillover occurs at an orbital separation as large as similar to 200M7-1/2 gravitational radii, where M = 107M7?M? is the total binary mass. If the secondary is less massive than similar to 106?M?, then the gap is closed before gravitational waves (GWs) start dominating the orbital decay. In this regime, the disc is still strongly perturbed, but the piled-up gas continuously overflows as in a porous dam, and crosses inside the secondary's orbit. The corresponding migration rate, which we label Type 1.5, is slower than the usual limiting cases known as Type I and II migration. Compared to an unperturbed disc, the steady-state disc in the overflowing regime is up to several hundred times brighter in the optical bands. Surveys such as PanSTARRS or LSST may discover the periodic variability of this population of binaries. Our results imply that the circumbinary discs around SMBHs can extend to small radii during the last stages of their merger, when they are detectable by LISA, and may produce coincident electromagnetic emission similar to active galactic nuclei.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories