Publication:
Magnetic self-assembly of three-dimensional surfaces from planar sheets

No Thumbnail Available

Date

2005

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Boncheva, M., S. A. Andreev, L. Mahadevan, A. Winkleman, D. R. Reichman, M. G. Prentiss, S. Whitesides, and G. M. Whitesides. 2005. “Magnetic Self-Assembly of Three-Dimensional Surfaces from Planar Sheets.” Proceedings of the National Academy of Sciences 102 (11): 3924–29. https://doi.org/10.1073/pnas.0500807102.

Research Data

Abstract

This report describes the spontaneous folding of flat elastomeric sheets, patterned with magnetic dipoles, into free-standing, 3D objects that are the topological equivalents of spherical shells. The path of the self-assembly is determined by a competition between mechanical and magnetic interactions. The potential of this strategy for the fabrication of 3D electronic devices is demonstrated by generating a simple electrical circuit surrounding a spherical cavity.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories