Publication: Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters
No Thumbnail Available
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bozzi, Aaron T., Lukas B. Bane, Wilhelm A. Weihofen, Anne L. McCabe, Abhishek Singharoy, Christophe J. Chipot, Klaus Schulten, and Rachelle Gaudet. 2016. “Conserved Methionine Dictates Substrate Preference in Nramp-Family Divalent Metal Transporters.” Proceedings of the National Academy of Sciences 113 (37): 10310–15. https://doi.org/10.1073/pnas.1607734113.
Research Data
Abstract
Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service