Publication:
Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters

No Thumbnail Available

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Bozzi, Aaron T., Lukas B. Bane, Wilhelm A. Weihofen, Anne L. McCabe, Abhishek Singharoy, Christophe J. Chipot, Klaus Schulten, and Rachelle Gaudet. 2016. “Conserved Methionine Dictates Substrate Preference in Nramp-Family Divalent Metal Transporters.” Proceedings of the National Academy of Sciences 113 (37): 10310–15. https://doi.org/10.1073/pnas.1607734113.

Research Data

Abstract

Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories