Publication: Fair Division via Social Comparison
No Thumbnail Available
Open/View Files
Date
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
ACM, Inc.
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Abebe, Rediet, Jon Kleinberg, and David Parkes. 2017. Fair Division via Social Comparison. AAMAS '17 Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, São Paulo, Brazil, May 08- 12, 2017, 281-289.
Research Data
Abstract
We study cake cutting on a graph, where agents can only evaluate their shares relative to their neighbors. This is an extension of the classical problem of fair division to incorporate the notion of social comparison from the social sciences. We say an allocation is {\em locally envy-free} if no agent envies a neighbor's allocation, and locally proportional if each agent values its own allocation as much as the average value of its neighbors' allocations. We generalize the classical ``Cut and Choose" protocol for two agents to this setting, by fully characterizing the set of graphs for which an oblivious {\em single-cutter protocol} can give locally envy-free (thus also locally-proportional) allocations. We study the {\em price of envy-freeness}, which compares the total value of an optimal allocation with that of an optimal, locally envy-free allocation. Surprisingly, a lower bound of $\Omega(\sqrt{n})$ on the price of envy-freeness for global allocations also holds for local envy-freeness in any connected graph, so sparse graphs do not provide more flexibility asymptotically with respect to the quality of envy-free allocations.
Description
Other Available Sources
Keywords
Social Choice, Fair Division, Graph-Theoretic Methods
Terms of Use
Metadata Only