Publication:
Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer

No Thumbnail Available

Date

2008

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Setlur, Sunita R., Kirsten D. Mertz, Yujin Hoshida, Francesca Demichelis, Mathieu Lupien, Sven Perner, Andrea Sboner, et al. 2008. “Estrogen-Dependent Signaling in a Molecularly Distinct Subclass of Aggressive Prostate Cancer.” JNCI: Journal of the National Cancer Institute 100 (11): 815–25. https://doi.org/10.1093/jnci/djn150.

Research Data

Abstract

Background The majority of prostate cancers harbor gene fusions of the 5'-untranslated region of the androgen-regulated transmembrane protease serine 2 (TMPRSS2) promoter with erythroblast transformation-specific transcription factor family members. The common fusion between TMPRESS2 and v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) is associated with a more aggressive clinical phenotype, implying the existence of a distinct subclass of prostate cancer defined by this fusion.Methods We used complementary DNA-mediated annealing, selection, ligation, and extension to determine the expression profiles of 6144 transcriptionally informative genes in archived biopsy samples from 455 prostate cancer patients in the Swedish Watchful Waiting cohort (1987-1999) and the United States-based Physicians(') Health Study cohort (1983-2003). A gene expression signature for prostate cancers with the TMPRSS2-ERG fusion was determined using partitioning and classification models and used in computational functional analysis. Cell proliferation and TMPRSS2-ERG expression in androgen receptor-negative (NCI-H660) prostate cancer cells after treatment with vehicle or estrogenic compounds were assessed by viability assays and quantitative polymerase chain reaction, respectively. All statistical tests were two-sided.Results We identified an 87-gene expression signature that distinguishes TMPRSS2-ERG fusion prostate cancer as a discrete molecular entity (area under the curve = 0.80, 95% confidence interval [CI] = 0.792 to 0.81; P < .001). Computational analysis suggested that this fusion signature was associated with estrogen receptor (ER) signaling. Viability of NCI-H660 cells decreased after treatment with estrogen (viability normalized to day 0, estrogen vs vehicle at day 8, mean = 2.04 vs 3.40, difference = 1.36, 95% CI = 1.12 to 1.62) or ER beta agonist (ER beta agonist vs vehicle at day 8, mean = 1.86 vs 3.40, difference = 1.54, 95% CI = 1.39 to 1.69) but increased after ER alpha agonist treatment (ER alpha agonist vs vehicle at day 8, mean = 4.36 vs 3.40, difference = 0.96, 95% CI = 0.68 to 1.23). Similarly, expression of TMPRSS2-ERG decreased after ER beta agonist treatment (fold change over internal control, ER beta agonist vs vehicle at 24 hours, NCI-H660, mean = 0.57- vs 1.0-fold, difference = 0.43-fold, 95% CI = 0.29- to 0.57-fold) and increased after ER alpha agonist treatment (ER alpha agonist vs vehicle at 24 hours, mean = 5.63- vs 1.0-fold, difference = 4.63-fold, 95% CI = 4.34- to 4.92-fold).Conclusions TMPRSS2-ERG fusion prostate cancer is a distinct molecular subclass. TMPRSS2-ERG expression is regulated by a novel ER-dependent mechanism.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories