Publication:
Melanoma Resistance to Photodynamic Therapy: New Insights

Thumbnail Image

Date

2013-01-01

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Huang, Ying-Ying, Daniela Vecchio, Pinar Avci, Rui Yin, Maria Garcia-Diaz, and Michael R. Hamblin. 2013. “Melanoma Resistance to Photodynamic Therapy: New Insights.” Biological Chemistry 394 (2). https://doi.org/10.1515/hsz-2012-0228.

Research Data

Abstract

Melanoma is the most dangerous form of skin cancer, with a steeply rising incidence and a poor prognosis in its advanced stages. Melanoma is highly resistant to traditional chemotherapy and radiotherapy, although modern targeted therapies such as BRAF inhibitors are showing some promise. Photodynamic therapy (PDT, the combination of photosensitizing dyes and visible light) has been tested in the treatment of melanoma with some promising results, but melanoma is generally considered to be resistant to it. Optical interference by the highly-pigmented melanin, the antioxidant effect of melanin, the sequestration of photosensitizers inside melanosomes, defects in apoptotic pathways, and the efflux of photosensitizers by ATP-binding cassette transporters have all been implicated in melanoma resistance to PDT. Approaches to overcoming melanoma resistance to PDT include: the discovery of highly active photosensitizers absorbing in the 700-800-nm near infrared spectral region; interventions that can temporarily reduce the amount or pigmentation of the melanin; compounds that can reverse apoptotic defects or inhibit drug-efflux of photosensitizers; and immunotherapy approaches that can take advantage of the ability of PDT to activate the host immune system against the tumor being treated.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories