Publication:
Optical lens-microneedle array for percutaneous light delivery

No Thumbnail Available

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Optical Society of America
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kim, Moonseok, Jeesoo An, Ki Su Kim, Myunghwan Choi, Matjaž Humar, Sheldon J. J. Kwok, Tianhong Dai, and Seok Hyun Yun. 2016. “Optical Lens-Microneedle Array for Percutaneous Light Delivery.” Biomedical Optics Express 7 (10): 4220. https://doi.org/10.1364/BOE.7.004220.

Research Data

Abstract

The limited penetration depth of light in skin tissues is a practical bottleneck in dermatologic applications of light-induced therapies, including anti-microbial blue light therapy and photodynamic skin cancer therapy. Here, we demonstrate a novel device, termed optical microneedle array (OMNA), for percutaneous light delivery. A prototype device with a 11 by 11 array of needles at a spacing of 1 mm and a length of 1.6 mm was fabricated by press-molding poly-(lactic acid) (PLA) polymers. The device also incorporates a matched microlens array that focuses the light through the needle tips at specific points to achieve an optimal intensity profile in the tissue. In experiments done with bovine tissues, the OMNA enabled us to deliver a total of 7.5% of the input photons at a wavelength of 491 nm, compared to only 0.85% without the device. This 9-fold enhancement of light delivery was close to the prediction of 10.8 dB by ray-tracing simulation and is expected to increase the effective treatment depth of anti-microbial blue light therapy significantly from 1.3 to 2.5 mm in human skin.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories