Publication:
Simulating the Sunyaev‐Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds

No Thumbnail Available

Date

2002

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

White, Martin, Lars Hernquist, and Volker Springel. 2002. “Simulating the Sunyaev‐Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds.” The Astrophysical Journal 579 (1): 16–22. https://doi.org/10.1086/342756.

Research Data

Abstract

We present results on the thermal and kinetic Sunyaev-Zeldovich (SZ) effects from a sequence of high-resolution hydrodynamic simulations of structure formation, including cooling, feedback, and metal injection. These simulations represent a self-consistent thermal model that incorporates ideas from the "preheating " scenario while preserving good agreement with the low-density intergalactic medium at z similar to 3 probed by the Lyalpha forest. Four simulations were performed, at two different resolutions with and without radiative effects and star formation. The long-wavelength modes in each simulation were the same, so we can compare the results on an object-by-object basis. We demonstrate that our simulations are converged to the subarcminute level. The effect of the additional physics is to suppress the mean Comptonization parameter by 20% and to suppress the angular power spectrum of fluctuations by just under a factor of 2 in this model, while leaving the source counts and properties relatively unchanged. We quantify how non-Gaussianity in the SZ maps increases the sample variance over the standard result for Gaussian fluctuations. We identify a large scatter in the Y-M relation that will be important in searches for clusters using the SZ effect(s).

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories