Publication:
Morphological Evolution of Ag/Mica Films Grown by Pulsed Laser Deposition

Thumbnail Image

Date

2003

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Materials Research Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Warrender, Jeffrey M. and Michael J. Aziz. Morphological evolution of Ag/Mica films grown by pulsed laser deposition. 2003. Materials Research Society Symposium Proceedings 749, W3.1.

Research Data

Abstract

Many vapor-deposited metal-on-insulator films exhibit a morphological progression with increasing thickness consisting of several distinct stages: (1) nucleation of 3-dimensional nanocrystalline islands; (2) elongation of the islands; (3) film percolation. Here we report a study of this progression during Pulsed Laser Deposition (PLD), a technique for film deposition that differs from thermal deposition in that the depositing species arrive in short energetic bursts, leading to instantaneous deposition fluxes orders of magnitude higher than can be achieved in thermal growth. Atomic Force Microscopy reveals that advancement through this same morphological progression occurs at lower thickness in PLD films relative to films grown under comparable conditions by thermal deposition, with PLD films having lower RMS roughness at a given thickness. We also observe that for a constant amount deposited per pulse, films deposited at higher laser pulse frequency are further advanced in morphological state. Kinetic Monte Carlo simulations reveal that PLD nucleation behavior differs from that of thermally deposited films, and this can account for the observed differences. Simulations also reveal a scaling of the percolation thickness with pulse frequency that is consistent with experiment.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories