Publication: Learning and Decision-Making for Intention Reconciliation
Open/View Files
Date
2002
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Association for Computing Machinery
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Sanmay, Das, Barbara J. Grosz and Avi J. Pfeffer. 2002. Learning and Decision-Making for Intention Reconciliation. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: July 15-19, 2002, Plazzo re Enzo, Bologna, Italy, ed. International Joint Conference on Autonomous Agents and Multiagent Systems, and Cristiano Castelfranchi, 1121-1128. New York: ACM Press.
Research Data
Abstract
Rational, autonomous agents must be able to revise their commitments in the light of new opportunities. They must decide when to default on commitments to the group in order to commit to potentially more valuable outside offers. The SPIRE experimental system allows the study of intention reconciliation in team contexts. This paper presents a new framework for SPIRE that allows for mathematical specification and provides a basis for the study of learning. Analysis shows that a reactive policy can be expected to perform as well as more complex policies that look ahead. We present an algorithm for learning when to default on group commitments based solely on observed values of group-related tasks and discuss the applicability of this algorithm in settings where multiple agents may be learning.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service