Publication: Hierarchical and Variational Geometric Modeling with Wavelets
Open/View Files
Date
1995
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Association for Computing Machinery
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Gortler, Steven J. and Michael F. Cohen. 1995. Hierarchical and variational geometric modeling with wavelets. In Proceedings of the 1995 symposium on interactive 3D graphics (SIGGRAPH 1995), April 9-12, 1995, Monterey, California, ed. SIGGRAPH and Michael J. Zyda, 35-42, 205. New York: ACM Press.
Research Data
Abstract
This paper discusses how wavelet techniques may be applied to a variety of geometric modeling tools. In particular, wavelet decompositions are shown to be useful for hierarchical control point or least squares editing. In addition, direct curve and surface manipulation methods using an underlying geometric variational principle can be solved more efficiently by using a wavelet basis. Because the wavelet basis is hierarchical, iterative solution methods converge rapidly. Also, since the wavelet coefficients indicate the degree of detail in the solution, the number of basis functions needed to express the variational minimum can be reduced, avoiding unnecessary computation. An implementation of a curve and surface modeler based on these ideas is discussed and experimental results are reported.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service